

1

 NOTES ON
Discrete Mathematics

MCA I Year/ I Semester
(2023-24)

By

Dr. K.V.S.Sudhakar
(PRINCIPAL, ASSOCIATE PROFESSOR)

 DEPARTMENT OF MCA
 RAMNATH GULJARILAL KEDIA COLLEGE OF COMMERCE

3-1-336, OPP NEW CHADERGHAT BRIDGE,

Kachiguda Station Road,

Esamia Bazar, Hyderabad 500 027, Telangana,India.

2

(PCC101) DISCRETE MATHEMATICS

Course Objectives

1. Use mathematically correct terminology and notation.

2. Construct correct direct and indirect proofs.

3. Use division into cases in a proof.

4. Use counterexamples.

5. Apply logical reasoning to solve a variety of problems

Course Outcomes

1. For a given logic sentence express it in terms of predicates, quantifiers, and logical connectives

2. For a given a problem, derive the solution using deductive logic and prove the solution based on logical

 inference

3. For a given a mathematical problem, classify its algebraic structure

4. Evaluate Boolean functions and simplify expressions using the properties of Boolean algebra

5. Develop the given problem as graph networks and solve with techniques of graph theory.

Suggested Readings:

1. Kenneth H. Rosen, Discrete Mathematics and its Applications, Tata McGraw – Hill

2. Susanna S. Epp, Discrete Mathematics with Applications,4th edition, Wadsworth Publishing Co. Inc

3. C L Liu and D P Mohapatra, Elements of Discrete Mathematics A Computer Oriented Approach, 3rd Edition by,

 Tata McGraw – Hill.

4. J.P. Tremblay and R. Manohar, “Discrete Mathematical Structure and it’s Application to Computer Science”,

 TMG Edition, Tata Mcgraw-Hill

5. Norman L. Biggs, Discrete Mathematics, 2nd Edition, Oxford University Press. Schaum’s Outlines Series,

 Seymour Lipschutz, Marc Lipson.

3

1

NUMBER SYSTEM

Unit Structure

1.0 Objectives

1.1 Introduction

1.2 Decimal Number System

1.3 Binary number system

1.3.1 What is binary number system?

1.3.2 Decimal to binary conversion

1.3.3 Binary to decimal conversion

1.3.4 Decimal to binary fraction conversion

1.3.5 Binary to decimal fraction conversion

1.4 Octal Number System

1.4.1 What is octal number system?

1.4.2 Decimal to octal fraction conversion

1.4.4 Octal to decimal conversion and Octal to decimal fraction
conversion.

1.4.5 Octal to binary conversion

1.4.6 Binary to octal conversion

1.5 Hexadecimal Number System

1.5.1 What is hexadecimal number system?

1.5.2 Decimal to hexadecimal conversion

1.5.3 Hexadecimal to decimal conversion

1.5.4 Hexadecimal to binary conversion

1.5.5 Binary to hexadecimal conversion

1.5.6 Hexadecimal to octal conversion and octal to hexadecimal
conversion

1.6 Binary Arithmetic

1.6.1 Binary Addition

1.6.2 Binary Subtraction

1.6.3 Binary Multiplication

1.6.4 Binary division

1.7 Summary

1.8 Unit End Exercises

1.9 References

4

1.0 OBJECTIVES

After going through this unit you will have knowledge :

 Decimal number system, binary number system, octal number system
and hexadecimal number system.

 Conversion of numbers from one system to other system.
 Binary arithmetic - addition, subtraction, multiplication and division.

1.1 INTRODUCTION

This unit mainly deals with the representation of various number
systems used in the computer system. The smallest piece of data
recognized and used by a computer is ‘bit’ or binary digit. The binary
system consists of two digits O and 1. In the system, ‘O’ can be
represented by electricity ‘off’ and ‘1’ by electricity being ‘on’. All the
numbers, letters and special characters that are entered in a computer are
internally represented in binary numbers. The computer only understands
‘O’ and ‘1’. It executes all operation using machine language which
consists of only ‘O’ and ‘1’. Hence it is important to understand and study
in detail the representation of binary numbers.

1.2 THE DECIMAL NUMBER SYSTEM

The number systems are based on an ordered set of number of
digits. The total number of digits used in a number system is called ‘base’
or ‘radix’ of the number system. The decimal number system used 10
digits - 0, 1, 2, ….. 9 and hence its base is 10. The base of binary number
system is 2, base of octal number system is 8 and hexadecimal system has
base 16. The decimal number system is the most popular system used not
only by scientists and engineers but also by the common man. It is a
positional number system as the value of any number depends on the
position of digits.

e.g. Consider number 638.

Its representation is 638 = 600 + 30 + 8

i.e. 2 1 0
10638 6 10 3 10 8 10       

Starting from left most digit, 6 is in the hundreds position. It is
called t he Most Significant Digit (MSD). 3is in the tens position. The last
digit 8 is in the unit position and is the least significant digit (LSD).

The example shows that the value of each position is a power of
base 10. The power can be either positive, negative or 0.

5

Power of 10 and its value:

010 1 0 1
10 1

1
  

110 10 1 1
1010 0.1  

210 100 2 1
10010 0.01  

310 1000 3 1
100010 0.001  

410 10000 4 1
1000010 0.0001  

510 100000 5 1
10000010 0.00001  

e.g. The number 3254.78 will be represented as
3 2 1 0 1 23254.78 3 10 2 10 5 10 4 10 7 10 8 10            

1.3 BINARY NUMBER SYSTEM

1.3.1 What is binary number system?
A computer stores numbers, letters and characters in a coded form

which is a series of string of Os and 1s. The binary number system
consists of only O and 1. The digits in binary system are called ‘bits’. A
group of 4 bits is called nibble and a group of 8 bits is called a byte. A
group of 16 bits is known as ‘word’ and a group of 32 bits is called a
‘double word’. This number system has base 2. Computers are designed to
handle only binary numbers because computer circuits have to handle only
two binary digits which simplifies the design of the circuits, reduces cost
and improves reliability.

In binary system, the value of each digit is based on 2 and
powers of 2.

1.3.2 Decimal to binary system conversion:

Step 1) Divide the number by 2, the remainder is either O or 1.

2) Place the remainder to the right of number.

3) Subsequently divide the partial quotient by 2 and again
place the remainder to the right of the partial quotient.

4) Repeat the steps till we get the partial quotient O.

5) The binary number is equal to the remainders arranged
so that the first remainder is the LSD and last remainder
is MSD.

i.e. in order from bottom to top.

6

Example 1. Convert 1065 into binary.

Successive
dividers

Original Number &
partial quotients

Remainders

2 65 1

2 32 0

2 16 0

2 8 0

2 4 0

2 2 0

2 1 1

0 STOP

10 265 1000001 

Example 2. Convert 1078 to binary.

Successive
Dividers

Original Number &
Partial quotients

Remainders

2 78 0

2 39 1

2 19 1

2 9 1

2 4 0

2 2 0

2 1 1

0

10 21001110   

1.3.3 Binary to decimal conversion :
To convert binary number to its equivalent decimal number,

multiply the extreme right digit by 02 , the second digit from right by 12 ,

the third digit from right by 22 and so on till we reach the left most digit.
Then add all these products. The sum is the decimal equivalent of the
binary number.

Example 1. Convert 21001110 to decimal number.

21001110 6 5 4 3 2 1 01 2 0 2 0 2 1 2 2 1 2 0 2            

10

64 0 0 8 4 2 0

78

      



7

Example 2 : Convert 1101012 to decimal.

2110101 5 4 3 2 1 01 2 2 0 2 1 2 2 1 2         

= 32 + 16 + 6 + 4 + 0 + 1
= 5310

1.3.4 Decimal to binary fraction conversion :
Step 1) Multiply the decimal fraction by 2.

2) After multiplication, if a number equal or greater than 1 is
obtained then place 1 on the right of the partial product. If the
product is less than 1, place 0 to the right of the partial product.
3) The partial product obtained in step 2 is multiplied by 2. The
process is repeated till the partial product is 0 or the resulting
binary fraction is to the required places of binary point
4) The ones and zeroes in the order obtained are equal to the binary
fraction.
5) The order is from top to bottom.

Example 1 : 10 20.625 ?

Successive
Multiplier

Decimal fraction &
Partial product

2  0.625 = 1.25 1

2  0.25 = 0.5 0

2  0.5 = 1.0 1

10 20.625 0.101  

Example 2 : 10 20.86 ?

2  0.86 = 1.72 1
2  0.72 = 1.44 1

2  0.44 = 0.88 0

2  0.88 = 1.76 1

10 20.86 0.1101  

Example 3 : 10 250.7 ?

In the last two examples we have converted for only decimal
numbers. In this example we will convert for both 50 and .7 & then
combine them.

We should be careful while writing order for 50 (the order is from
top to bottom) and for .7 (the order is from bottom to top).

8

Successive
Dividers

Original Number &
Partial quotients

Remainders Successive
Multiplier

Decimal Fraction &
Partial Product

2 50 0 2 0.7 1.4  1
2 25 1 2 0.4 0.8  0
2 12 0 2 0.8 1.6  1
2 6 0 2 0.6 1.2  1
2 3 1
2 1 1

0

Therefore

10 250 110010 10 20.7 0.1011

10 250.7 110010.1011  

1.3.5 Binary to decimal fraction conversion :
To convert a binary fraction to decimal fraction multiply the first

bit after binary point by 12 , the second by 22 , third by 32 and so on.
Add all these products to get the decimal equivalent.

Example 1. 2 100.1111 ?

1 2 3 40.1111 1 2 1 2 1 2 1 2
          

1 1 1 1
1 1 1 1

2 4 8 16
       

0.5 0.25 0.125 0.0625        

100.9375

Example 2. 2 10111011.101 ?

5 4 3 2 1 0111011 1 2 1 2 1 2 0 2 1 2 1 2           
32 16 8 0 2 1               
59

1 2 30.101 1 2 0 2 1 2         
1 1

2 80  

0.5 0 0.125      
0.625

2 10111011.101 59.625

Check your progress:

1) 10 296 ? Ans: 21100000

2) 2 101000001 ? Ans: 1065

3) 2 1011010 ? Ans: 1026

9

4) 10 2154 ? Ans: 210011010

5) 2 101001010.1010001 ? Ans: 1074.6328125

6) 2 10101001.1101 ? Ans: 1041.8125

7) 10 2678.67 ? Ans: 21010100110.1010

8) 10 259.625 ? Ans: 2111011.101

1.4 OCTAL NUMBER SYSTEM

1.4.1 What is octal number system?

Octal system was used to deal with the long strings of 1s and 0s in
binary. It is a base 8 system using the digits 0, 1, 2, 3, 4, 5, 6 and 7. Thus
each digit of an octal number can have only values 0 to 7.

The digit position in an octal number have weights as follows-

4 3 2 1 0 2 3 48 8 8 8 8 8 8 8  


        

Octal point
The largest octal digit is 7. After 7, the next digit is taken to be 10.

Octal
0
1
2
3
4
5
6
7 8 8 87 1 10 

10
11


16
17
20

8 8 817 1 20   


27
30

8 8 827 1 30   


& so on

1.4.2 Decimal to Octal conversion:

Steps:
1) Divide the decimal number by 8.
2) Place the remainder to the right of original number.

10

3) Subsequently divide the partial quotient by 8 and place the
remainder to the right of partial quotient.

4) Repeat the above steps till we get partial quotient 0.

5) The octal number is equal to the remainder arranged so that
first remainder is LSD and last remainder is MSD of the octal
number (i.e. from down to up)

Example 1. 11910 = ?8

Successive
dividers

Original Number &
partial quotients

Remainders

8 119 7

8 14 6

8 1 1

0

 11910 = 1678

2. 253610 = ?8

Successive
dividers

Original Number &
partial quotients

Remainders

8 2536 0

8 317 5

8 39 7

8 4 4

0

 253610 = 47508

1.4.3 Decimal to Octal fraction Conversion :

Steps:

1) Multiply the decimal fraction by 8.

2) Write the integer to the right of the product i.e. if

0.6 x 8 = 4.8 then place 4 to the right of the product.

3) The partial product is again multiplied by 8 and the

integer is placed to the right of the product.

4) Repeat the process till the partial products is seen or

till the required place of octal point.

11

Example 1 0.9610 = ?8

0.96 × 8 = 7.68 7

0.68 × 8 = 5.44 5

0.44 × 8 = 3.52 3

0.52 × 8 = 4.16 4

0.16 × 8 = 1.28 1

0.28 × 8 = 2.24

0.9610 = 0.753418

2. 0.562510 = ?8

0.5625 x 8 = 4.5 4
0.5 x 8 = 4.0 4
 0.562510 = 0.448

3. 73.5210 = ?8

Successive
dividers

Original
number &
partial
quotient

Reminders

8 73 1

8 9 1

8 1 1

0

7310 = 1118

 0.73.5210 = 111.41218

1.4.4 Octal Decimal Conversion :

To convert a whole octal number to its decimal equivalent, the
extreme right hand digit is multiplied by 80, the second digit from right is
multiplied by 81, the third from right is multiplied by 82, and so on. Then
all their products are added to get the required decimal number.

To convert octal fraction to decimal fraction-
Multiply first digit after octal point by 8-1, second digit after octal

point by 8-2, third digit after octal point by 8-3 & so on. Add all their
products to get the required decimal fraction.

Example 1. 568 = ?10

56 = 5 x 81 + 5 x 80 = 40 + 6 = 46
 568 = 4610

8 x 0.52 = 4.16 4
8 x 0.16 = 1.28 1
8 x 0.28 = 2.24 2
8 x 0.24 = 1.92 1

0.5210 = 0.41218

12

2) 6428 = 6 × 82 + 4 × 81 + 4 × 80

= 6 × 64 + 4 × 8 + 2
= 384 + 32 + 2 = 41810

3) 0.5638 = ?10

0.563 = 5 x 8-1 + 6 x 8-2 + 3 x 8-3

=
5 6 3

+ +
8 64 512

= 0.625 + 0.09375 + 0.0058 59375
= 0.724609375

0.5638 = 0.72460937510

4) 111.41218 = ?10

111 = 1 x 82 + 1 x 81 + 1 x 80 = 64 + 8 + 1 = 73
0. 41218 = 4 x 8-1 + 1 x 8-2 + 2 x 8-3 + 1 x 8-4

=
2 3 4

4 1 2 1
+ + +

8 8 8 8
 

= 0.5 + 0.015625 + 0.00390625 + 0.00024414
= 0.5197753910

111.41218 = 73.5197753910

Check your progress :

1) 3648 = ?10 Ans : 24410

2) 728 = ?10 Ans : 5810

3) 11910 = ?8 Ans : 1678

4) 634.64062510 = ?8 Ans : 1172.518

5) 0.9610 = ?8 Ans : 0.7534128

6) 4548 = ?10 Ans : 30010

7) 0.1358 = ?10 Ans : 0.181640610

1.4.5 Octal to Binary Conversion

The conversion of octal to binary is done by converting each octal
digit to its 3-bit binary equivalent

Example 1 568

Successive
Dividers

Original
Number &

Partial
quotients

Remainders Successive
Dividers

Original
Number &

Partial
quotients

Remainders

2 5 1 2 6 0
2 2 0 2 3 1
2 1 1 2 1
2 0 0
2
2

58 = 1012 68 = 1102

568 = 1011102

13

OR

We can convert 568 to decimal number and then convert the
decimal number to its binary equivalent.

Check : 568 = 4610 = 1011102

Example 2 0.2168 = ?2

Successive
Dividers

Original
Number &
Partial
quotients

Remainders Successive
Dividers

Original
Number &
Partial
quotients

Remainders Successive
Dividers

Original
Number &
Partial
quotients

Remainders

2 2 0 2 1 1 2 6 0
2 1 1 0 2 3 1

0 2 1
0

010 001 110

Note if it is less than 3 - bit add 0 in the left to make 3 bit.

 0.2168 = 0.0100011102

3) 576.128 = ?2

Successive
Dividers

Original
Number &
Partial
quotients

Remainders Successive
Dividers

Original
Number &
Partial
quotients

Remainders Successive
Dividers

Original
Number &
Partial
quotients

Remainders

2 5 1 2 7 1 2 6 0
2 2 0 2 3 1 2 3 1
2 1 1 2 1 1 2 1 1

0 0 0

101 111 110

5768 = 1011111102

0.128

Successive
Dividers

Original
Number
& Partial
quotients

Remainders Successive
Dividers

Original
Number
& Partial
quotients

Remainders

2 1 1 2 2 0
0 2 1 1

0

001 010
0.128 = 0.0010102

576.128 = 101111110.0010102

14

1.4.6 Binary to Octal Conversion:
Steps:

1) Make a group of 3 bits, starting from binary point
2) For whole numbers make group of three from right to

left (from binary point)
3) For fractional part, move left to right from binary point.
4) In case of one or two bits left, add zeroes to make a

group of three.
5) Replace each group of 3 bits by equivalent octal

numbers.

Example 1 11010112 = ?8

1101011 

001 (Complete group of 3 bits by adding zeroes)

001 = 0 x 22 + 0 x 21 + 1 x 20 = 0 + 0 + 1 = 1
101 = 1 x 22 + 0 x 21 + 1 x 20 = 4 + 0 + 1 = 5
011 = 0 x 22 + 1 x 21 + 1 x 20 = 0 + 2 + 1 = 3

11010112 = 1538

2) 0.0101012 = ?8

0.010101

010 = 0 x 22 + 1 x 21 + 0 x 20 = 0 + 2 + 0 = 2
101 = 1 x 22 + 0 x 21 + 1 x 20 = 4 + 0 + 1 = 5

 0.0101012 = 0.258

3) 1101.111012 = ?

1 101111 01   

001 101111 010   

This will give 15.728 (check)

 1101.111012 = 15.728

Check your progress:

1) 6378 = ?2 Ans : 1100111112

2) 2568 = ?2 Ans : 101011102

3) 56.348 = ?2 Ans : 101110.0111002

4) 1011.10112 = ?8 Ans : 13.548

5) 0.11012 = ?8 Ans : 0.648

15

1.5 HEXADECIMAL NUMBER SYSTEM

1.5.1 What is hexadecimal number system?
Hexadecimal number system is a system with base 16. Thus it is a

system which has 16 possible digit symbols. As we are familiar with only
10 digits - 0 to 9, the hexadecimal system uses letters A to F to represent
the remaining numbers 10 to 15.

Thus the 16 digit symbols are
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F.

Also four binary digits are grouped together to represent each digit
in hexadecimal number system.

1.5.2 Decimal to Hexadecimal Conversion -

Steps-

1) Divide the number by 16

2) Place the remainder to the right of original number.

3) Subsequently divide the partial quotient by 16 and place the
remainder to the right of partial quotient.

4) Repeat the above steps till we get quotient 0

5) Then the hexadecimal number is equal to the remainders

arranged from the last remainder to the first remainder (ie.
down to up)

Example 1 : 1076110 = ?16

Successive Dividers Original Number & Partial quotients Remainders

16 10761 9

16 672 0

16 42 10

16 2 2

0

1076110 = 2 (10) 09
= 2 A 0916

2) 674710 = ?16

Successive Dividers Original Number & Partial quotients Remainders

16 6747 11

16 421 5

16 26 10

16 1 1

0

674710 = 1 (10) 5 (11)
= 1 A 5B16

16

Decimal to hexadecimal fraction conversion-
Steps :

1) Multiply decimal fraction by 16

2) Write the integer to the right of product.

3) The partial product is again multiplied by 16 and integer is placed
to the right of product.

4) Repeat the process till partial product is seen or till the required
place of hexadecimal point.

Example 1 0.25610 = ?16

0.256 × 16 = 4.096 4
0.096 × 16 = 1.536 1
0.536 × 16 = 8.576 8
0.576 × 16 = 9.216 9

2) 97.23610 = ?16

16 97 1
16 6 6

0

9710 = 6116

0.236 × 16 = 3.776 3
0.776 × 16 = 12.416 12
0.416 × 16 = 6.656 6
0.656 × 16 = 10.496 10

 0.23610 = 0.3(12) 6 (10) = 0.3C6A16

 97.23610 = 61.3C6A16

1.5.3 Hexadecimal to Decimal conversion-
1) To convert a whole hexadecimal number to its decimal

equivalent, the extreme right digit is multiplied by 160, the second from
right by 161, the third digit from right by 162 and so on. Add all their
products to get the required decimal number.

2) To convert hexadecimal fraction to decimal fraction, multiply
the first digit after hexadecimal point by 16-1, the second digit from point
by 16-2 and so on. Add all these products to get the equivalent decimal
number.

Example 1 1A5E16 = ?10

1) 1A5E
= 1 x 163 + A x 162 + 5 x 161 + E x 160

= 4096 + 10 x 256 + 80 + 14 x 1
= 675010

17

2) AB716

= A x 162 + B x 161 + 7 x 160

= 10 x 256 + 11 x 16 + 7
= 274310

3) 61.3C6A16 = ?10

61 = 6 x 161 + 1 x 160 = 96 + 1 = 97

0.3C6A = 3 x 16-1 + C x 16-2 + 6 x 16-3 + A x16-4

=
3 12 6 10

+ + +
16 256 4096 65536

= 0.1875 + 0.0469 + 0.0015 + 0.0002
= 0.2361

 61.3C6A16 = 97.236110

Check your progress :

1) 3A916 = ?10 Ans. 93710

2) 755110 = ?16 Ans. 1D7F16

3) 3370.7510 = ?16 Ans. D2A.616

4) 0.394210 = ?16 Ans. 0.64EA
5) 0.4816 = ?10 Ans. 0.2812516

1.5.4 Hexadecimal to Binary conversion
The conversion from hexadecimal to binary is performed by
converting each hexadecimal digit to its 4-bit binary equivalent.

Example 1. 4C3F16 = ?2

C = 12 F = 15

2 4 0 2 12 0 2 3 1 2 15 1
2 2 0 2 6 0 2 1 1 2 7 1
2 1 1 2 3 1 0 2 3 1

0 2 1 1 2 1 1
0 0

100 1100 11 1111

4 bit is (0100) (1100) 4 bit is (0011) (1111)

 4C3F16 = 01001100001111112

18

2) AB.CD16 = ?2

A = 10 B = 11 C = 12 D = 13
2 10 0 2 11 1 2 12 0 2 13 1
2 5 1 2 5 1 2 6 0 2 6 0
2 2 0 2 2 0 2 3 1 2 3 1
2 1 1 2 1 1 2 1 1 2 1 1

0 0 0 0
(1010) (1011) (1100) (1101)

 AB.CD16 = 10101011.110011012

1.5.5 Binary to hexadecimal Conversion -
1) Group the binary bits into fours starting from binary point.
2) For whole number, make group of four form right to left

from binary point.
3) For fractional part, make group of four from left to right

from binary point.
4) In case you are left with only one or two or three bits, add

zero or zeroes at appropriate places.
5) Replace each group by equivalent hexadecimal numbers

(by multiplying by powers 23 to 20)

Example 1 : 11010011002 = ?16

1101001100 

(0011) (0100) (1100)
0011 = 0 x 23 + 0 x 22 + 1 x 21 + 1 x 20 = 2+1 = 3
0100 = 0 x 23 + 1 x 22 + 0 x 21 + 0 x 20 = 4
1100 = 1 x 23 + 1 x 22 + 0 x 21 + 0 x 20 = 12 = C

 11010011002 = 34C16

2) 110101.11111012 = ?16

1101011111 01  

(0011) (0101).(1111)(1010)
0011 = 0 x 23 + 0 x 22 + 1 x 21 + 1 x 20 = 3
0101 = 0 x 23 + 1 x 22 + 0 x 21 + 1 x 20 = 5
1111 = 1 x 23 + 1 x 22 + 1 x 21 + 1 x 20 = 15 = F
1010 = 1 x 23 + 0 x 22 + 1 x 21 + 0 x 20 = 10 = A

 110101.11111012 = 35.FA16

Check your progress :

1) F2E16 = ?2 Ans. 1111001011102

2) 6BC16 = ?2 Ans. 0110101111002

3) 101101101112 = ?16 Ans. 5B716

4) 11111102 = ?16 Ans. 7E16

5) 0.01010112 = ?2 Ans. 0.5B16

6) 0.2 D616 = ?2 Ans. 0.1110110101102

19

1.5.6 Hexadecimal to Octal numbers-
Steps-
1) First convert each digit in number to its binary equivalent

(by dividing by 2) and write it in group of 4 bits.
2) Then make group of 3 bits each from right to left.
3) Again convert it into binary equivalent (by multiplying by

powers 22 to 20)

Octal to hexadecimal numbers-
Steps-
1) Convert each digit in binary equivalent (by dividing by 2)

and write in group of 3 bits each.
2) Then take group of 4 bits each from right to left.
3) Again convert it into binary equivalent (by multiplying by

powers 23 to 20)

Example 1 : 3F216 = ?8

F = 15
2 3 1 2 15 1 2 2 0
2 1 1 2 7 1 2 1 1

0 2 3 1 0
2 1 1

0
(0011) (1111) (0010)

001111110010 

001 = 0 × 22 + 0 × 21 + 1 × 26 = 1
111 = 1 x 22 + 1 x 21 + 1 x 20 = 7
110 = 1 x 22 + 1 x 21 + 0 x 20 = 6
010 = 0 x 22 + 1 x 21 + 0 x 20 = 2

 (3F2)16 = 17628

2) 15278 = ?16

2 1 1 2 5 1 2 2 0 2 7 1
0 2 2 0 2 1 1 2 3 1

2 1 1 0 2 1 1
0 0

(001) (101) (010) (111)

001101010111 

0011 = 0 x 23 + 0 x 22 + 1 x 21 + 1 x 20 = 3
0101 = 0 x 23 + 1 x 22 + 0 x 21 + 1 x 20 = 5
0111 = 0 x 23 + 1 x 22 + 1 x 21 + 1 x 20 = 7

 15278 = 35716

20

3) 47.438 = ?16

2 4 0 2 7 1 2 4 0 2 3 1
2 2 0 2 3 1 2 2 0 2 1 1
2 1 1 2 1 1 2 1 1 0

0 0 0
(100) (111) (100) (011)

100111.100011

10 0111100 011. 

0010 0111 1000 1100.   

0010 = 0 x 23 + 0 x 22 + 1 x 21 + 0 x 20 = 2
0111 = 0 x 23 + 1 x 22 + 1 x 21 + 1 x 20 = 4 + 2 + 1 = 7
1000 = 1 x 23 + 0 x 22 + 0 x 21 + 0 x 20 = 8
1100 = 1 x 23 + 1 x 22 + 0 x 21 + 0 x 20 = 8 + 4 = 12 = C

 47.438 = 27.8C16

Remember : When we are converting

Hexadecimal to octal number first convert each digit in group of 4 bits
then make group of 3 bits from right to left.

But when we are converting octal to Hexadecimal number first convert
each digit in group of 36 bits then take group of 4 bits each from right to
left.

Check your prograss -

1) 5A316 = ?8 Ans : 26438

2) 47538 = ?16 Ans : 9EB16

1.6 BINARY ARITHMETIC

1.6.1 Binary Addition:

Rules : 0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0 i.e. take it as 0 with a

carry of 1.

Example 1 Add 110101 and 101111

1 1 0 1 0 1
+ 1 0 1 1 1 1

1 1 0 0 0 0 0

21

2) 10 110 3) 1010
+ 1 101 1000

100011 + 0110
0111
11111

1.6.2 Binary Subtraction

Rules : 0 - 0 = 0
1 - 1 = 0
1 - 0 = 1
0 - 1 = 1 and borrow 1

*** * *
eg. 1) 110101 2) 10110

+ 101111 - 1101
000110 1001

* columns are borrowed from
** * ***

3) 11011.0 4) 1101110
- 1001.1 - 10111

10001.1 1010111

5) 1000101 6) 110011
- 101100 - 10110

11001 11101

1.6.3 Multiplication:

Rules : 0 x 0 = 0
0 x 1 = 0
1 x 0 = 0
1 x 1 = 1

eg. 1) 10110 2) 111
x 1101 x 101

10110 111
00000x 000x

+ 10110xx + 111xx
10110xxx 100011

100011110

3) 1111
x 111

1111
1111x

+ 1111xx
1101001

22

Note: Check multiplication by checking their equivalent decimal
multiplication.

1.6.4 Division:
Division for binary numbers can be carried out by following same
rules as those of decimal system.

eg. 1) Divide 100011 by 101

101 100011 111

- 101
0111
- 101

0101
- 101

0
Ans: 111

2) Divide 11110 by 110

110 11110 101

- 110
11

- 0
110

- 110
0

Ans: 101

3) 1110 1000110 101

- 1110
00111

- 0
1110

- 1110
0

Ans: 101

Check your progress:

1) 1100 + 1011 Ans: 10111

2) 11101 + 10011 Ans: 110000

3) 1100 + 1010 + 1101 + 0111 Ans: 101010

4) 1110 - 1011 Ans: 0011

23

5) 11110011 - 1110001 Ans: 10000010

6) 11010 x 1011 Ans: 100011110

7) 0010111 x 0000011 Ans: 1000101

8) 00101010  00000110 Ans: 111

9) 00100101 - 00010001 Ans: 10100

1.7 SUMMARY

Computer uses only binary digits O and I. A binary digit is called a
bit. There are two states in a bit - O and 1. In this unit we have seen four
number systems. Decimal system has base 10, binary system - base 2,
octal system - base 8 and hexadecimal system has base 16. Three binary
digits correspond to one octal digit and four binary digits translate into one
hexadecimal digit. The following table shows the four systems.

Binary Octal Hexadecimal Decimal

0000 0 0 0

0001 1 1 1

0010 2 2 2

0011 3 3 3

0100 4 4 4

0101 5 5 5

0110 6 6 6

0111 7 7 7

1000 10 8 8

1001 11 9 9

1010 12 A 10

1011 13 B 11

1100 14 C 12

1101 15 D 13

1110 16 E 14

1111 17 F 15

In binary arithmetic, addition is simply the bitwise XOR operation
with carry and multiplication is simply logical AND operation.
Subtraction is equivalent to adding a negative number and division is
equivalent to multiplying by the inverse.

1.8 UNIT END EXERCISES

1)    
10 2

76 ? Ans:  
2

1001100

2) 2 1011000.0011 ? Ans: 24.1875

24

3) Convert the following binary numbers into decimal numbers.
i) 11001.0101 Ans: 25.3125
ii) 1101.11 Ans: 13.75
iii) 1001.101 Ans: 9.625
iv) 1011001 Ans: 89
v) 0.1011 Ans: 0.6875
vi) 0.0101 Ans: 0.3125

4) Convert decimal into binary numbers.
i) 97 Ans: 1100001
ii) 154 Ans: 10011010
iii) 17.71875 Ans: 10001.1011
iv) 74.635 Ans: 1001010.1010001
v) 43 Ans: 101011

5) Convert octal to decimal number
i) 5264 Ans: 2740
ii) 642 Ans: 418
iii) 704 Ans: 452
iv) 134 Ans: 92
v) 1075.6256 Ans: 573.79248

6) Convert decimal to octal numbers -

i) 108 Ans: 10

ii) 2749 Ans: 5275
iii) 9 Ans: 11
iv) 3965 Ans: 7575
v) 460 Ans: 714
vi) 201 Ans: 311

7) Convert octal to binary numbers -
i) 435 Ans: 100011101
ii) 13.54 Ans: 1011.1011
iii) 134 Ans: 1011100
iv) 576.216 Ans: 101111110.010001110
v) 56.34 Ans: 101110.011100

8) Convert binary to octal numbers -
i) 110111101 Ans: 675
ii) 11000110 Ans: 306
iii) 1111000 Ans: 170
iv) 1101.11101 Ans: 15.72
v) 0.1101 Ans: 0.64

25

9) Convert hexadecimal to decimal numbers -

i) 161F95 Ans: 108085

ii) 16475C Ans: 1018268

iii) 160.D2F Ans: 100.82397

iv) D6C1 Ans: 1054977

10) Convert decimal to hexadecimal numbers -
i) 3370 Ans: D2A
ii) 70 Ans: 46
iii) 0.62 Ans: 0.9EB851
iv) 10761 Ans: 2A09
v) 6747 Ans: 1A5B

11) Convert hexadecimal to binary numbers -

i) 1659C Ans: 0101100111002

ii) 6D.3A Ans: 21101101.00111010

iii) 6BC Ans: 110101111002

iv) 43CF Ans: 1000011110011112

12) Convert binary to hexadecimal numbers -
i) 211011110 Ans: 16DE

ii) 2110000110 Ans: 16186

iii) 20.011011 Ans: 160.6C

13) Convert octal to hexadecimal numbers -
i) 46.57 Ans: 26.BC
ii) 134 Ans: 5C

14) Convert hexadecimal to octal numbers -
i) 4B Ans: 113
ii) 5B.3A Ans: 133.164

15) Perform the following Binary Arithmetic -
i) 10101 + 1110 Ans: 100011
ii) 101 + 1010 Ans: 1111
iii) 1101 + 1111 Ans: 11100
iv) 2 21011 0110 Ans: 0101

v) 1101 1001  Ans: approx 1.0111
vi) 21101 1010 Ans: 11111010

26

1.9 REFERENCES

1) Computer fundamentals - B.Ram (4th edition)

New Age International Publishers

2) Fundamentals of Computers - V. Rajaraman (4th edition)

Prentice Hall - India

3) Computer fundamentals (3rd edition)

Pradeep Sinha & Priti Sinha - BPB publications

4) Digital computer fundamentals - 6th edition

- Thomas Bartee (Tata McGraw Hili)

5) Computer fundamentals - D.P. Nagpal (S. Chand)

6) Computer fundamentals - A.B.Patil, D. Ravichandran (for MSBTE) -
Tata McGraw Hill



































27

2

PROPOSITIONS AND LOGICAL
OPERATIONS

Unit Structure :

2.0 Objectives

2.1 Introduction

2.2 Propositions

2.3 Logical Operations or Logical Connectives

2.4 Logical Equivalence

2.5 Logical Implications:

2.6 Normal form and Truth Tables
2.7 Predicates and Quantifiers
2.8 Theory of Inference for the predicate Calculas

2.9 Mathematical Induction

2.10 Unit End Exercise

2.11 References

2.0 OBJECTIVES :

After going through this unit, you will be able to :

 Define statement & logical operations.

 Define & to use the laws of Logic.

 Describe the logical equivalence and implications.

 Define arguments & valid arguments.

 Test the validity of argument using rules of logic.

 Give proof by truth tables.

 Give proof by mathematical Induction.

2.1 INTRODUCTION :

Mathematics is an exact science. Every statement in Mathematics
must be precise. Also there can’t be Mathematics without proofs and each
proof needs proper reasoning. Proper reasoning involves logic. The
dictionary meaning of ‘Logic’ is the science of reasoning. The rules of
logic gives precise meaning to mathematic statements. These rules are
used to distinguished between valid & invalid mathematical arguments.

28

In addition to its importance in mathematical reasoning, logic has
numerous applications in computer science to verify the correctness of
programs & to prove the theorems in natural & physical sciences to draw
conclusion from experiments, in social sciences & in our daily lives to
solve a multitude of problems.

The area of logic that deals with propositions is called the
propositional calculus or propositional logic. The mathematical approach
to logic was first discussed by British mathematician George Boole; hence
the mathematical logic is also called as Boolean logic.

In this chapter we will discuss a few basic ideas.

2.2 PROPOSITIONS (OR STATEMENTS)

A proposition (or a statement) is a declarative sentence that is
either true or false, but not both.

A proposition (or a statement) is a declarative sentence which is
either true or false but not both.

Imperative, exclamatory, interrogative or open statements are not
statements in logic. Mathematical identities are considered to be
statements.

Example 1 : For Example consider, the following sentences.

i) The earth is round.

ii) 4 + 3 = 7

iii) London is in Denmark

iv) Do your homework

v) Where are you going?

vi) 2 + 4 = 8

vii) 15 < 4

viii) The square of 4 is 18.

ix) 1 2x  

x) May God Bless you!

All of them are propositions except iv), v), ix) & x) sentences i), ii)
are true, where as iii), iv), vii) & viii) are false.

Sentence iv) is command hence not proposition. Is a question so
not a statement. ix) Is a declarative sentence but not a statement, since it
is true or false depending on the value of x. x) is a exclamatory sentence
and so it is not statement.

29

Mathematical identities are considered to be statements.

Statements which are imperative, exclamatory, interrogative or
open are not statements in logic.

Compound statements :

Many propositions are composites that is, composed of
subpropositions and various connectives discussed subsequently. Such
composite propositions are called compound propositions.

A proposition is said to be primitive if it can not be broken down
into simpler propositions, that is, if it is not composite.

Example 2 : Consider, for example following sentences.

(a) “The sum is shining today and it is cold”

(b) “Juilee is intelligent or studies every night.”

Also the propositions in Example 1 are primitive propositions.

2.3 LOGICAL OPERATIONS OR LOGICAL
CONNECTIVES :

The phrases or words which combine simple statements are called
logical connectives.

For example, ‘and’, ‘or’, ‘note’, ‘if……then’, ‘either…….or’ etc….

In the following table we list some possible connectives, their
symbols & the nature of the compound statement formed by them.

Sr. No. Connective Symbol Compound statement

1 AND  Conjuction

2 OR  Disjunction

3 NOT  Negation

4 If……..then  Conditional or
implication

5 If and only if (iff)  Biconditional or
equivalence

Now we shall study each of basic logical connectives in details.

30

Basic Logical Connectives :

2.3.1 Conjunction (AND) :

If two statements are combined by the word “and” to form a
compound proposition (statement) is called the conjunction of the original
proposition.

Symbolically, if P & Q are two simple statements, then ‘ P Q ’ denotes

the conjunction of P and Q and is read as ‘P and Q.

Since, P Q is a proposition it has a truth value and this truth value

depends only on the truth values of P and Q.

Specifically, if P & Q are true then P Q is true; otherwise P Q is

false.

The truth table for conjunction is as follows.

P Q P Q

T T T

T F F

F T F

F F F

Example 3 :

Let P : Monsoon is very good this year.
Q : The rivers are rising.

then
P Q : Monsoon is very good this year and rivers are rising.

2.3.2 Disjunction (OR) :

Any two statements can be connected by the word ‘or’ to form a
compound statement called disjunction.

Symbolically, if P and Q are two simple statements, then P Q denotes

the disjunction of P and Q and read as 'P or Q' .

The truth value of P Q depends only on the truth values of P and Q.

specifically if P and Q are false then P Q is false otherwise P Q is

true.

31

The truth table for disjunction is as follows.

P Q P Q

T T T

T F T

F T T

F F F

Example 4 :

P : Paris is in France
Q : 2 3 6 
then P Q : Paris is in France or 2 + 3 = 6.

Here, P Q is True since P is true & Q is False.

Thus, the disjunction P Q is false only when P and Q are both false.

2.3.3 Negation (NOT)

Given any proposition P, another proposition, called negation of P,
can be formed by writing “It is not the case that…….. or”. “It is false
that…….” before P or, if possible, by inserting in P the word “not”.

Symbolically P or P read “not P” denotes the negation of P.
the truth value of P depends on the truth value of P.

If P is true then P is false and if P is false then P is true. The
truth table for Negation is as follows :

P P

T F

F T

Example 5 :

Let P : 6 is a factor of 12.
Then Q = P : 4 is not a factor of 12.
Here P is true & P is false.

2.3.4 Conditional or Implication : (If……then)

If two statements are combined by using the logical connective
‘if….then’ then the resulting statement is called a conditional statement.

32

If P and Q are two statements forming the implication “if P then
Q” then we denotes this implication P Q .

In the implication P Q ,

P is called antecedent or hypothesis
Q is called consequent or conclusion.

The statement P Q is true in all cases except when P is true and Q is

false.

The truth table for implication is as follows.

P Q P Q

T T T

T F F

F T T

F F T

Since conditional statement play an essential role in mathematical
reasoning a variety of terminology is used to express P Q .

i) If P then Q

ii) P implies Q

iii) P only if Q

iv) Q if P

v) P is sufficient condition for Q

vi) Q when P

vii) Q is necessary for P

viii) Q follows from P

ix) if P, Q

x) Q unless P

Converse, Inverse and Contrapositive of a conditional statement : We
can form some new conditional statements starting with a conditional
statements related conditional statements that occur so often that they have
special names  converse, contrapositive & Inverse. Starting with a
conditional statement P Q that occur so often that they have special

names.

1. Converse : If P Q is an implication then Q P is called the

converse of P Q .

2. Contrapositive : If P Q is an implication then the implication

Q P  is called it’s contrapositive.

33

3. Inverse : If P Q is an implication then P Q  is called its

inverse.

Example 6 :

Let P : You are good in Mathematics.
Q : You are good in Logic.

Then, P Q : If you are good in Mathematics then you are good in Logic.

1) Converse :  Q P

If you are good in Logic then you are good in Mathematics.

2) Contrapositive : Q P 

If you are not good in Logic then you are not good in Mathematics.

3) Inverse :  P Q 

If you are not good in Mathematics then you are not good in Logic.

2.3.5 Biconditional Statement : Let P and Q be propositions. The
biconditional statement P Q is the proposition "P if and only if Q" .

The biconditional statement is true when P and Q have same truth values
and is false otherwise.

Biconditional statements are also called bi-implications. It is also
read as p is necessary and sufficient condition for Q.

The truth table for biconditional statement is as follows.

P Q P Q

T T T

T F F

F T F

F F T

Example 7 : Let P : You can take the flight.
Q : You buy a ticket.
Then P Q is the statement.

“You can take the flight iff you buy a ticket”.

Precedence of Logical Operators :

We can construct compound propositions using the negation
operator and the logical operators defined so far. We will generally use
parentheses to specify the order in which logical operators in a compound
proposition are to be applied. In order to avoid an excessive number of
parantheses.

34

We sometimes adopt an order of precedence for the logical
connectives. The following table displays the precedence levels of the
logical operators.

Operator Precedence

 1

 2

 3

 4

 5

2.4 LOGICAL EQUIVALANCE :

Compound propositions that have the same truth values in all
possible cases are called logically equivalent.

Definition : The compound propositions P and Q are called logically
equivalent if P Q is a tautology. The notation P Q denotes that P and

Q are logically equivalent.

Some equivalance are useful for deducing other equivalance. The
following table shows some important equivalance.

2.4.1 Logical Identities or Laws of Logic :

Name Equivalance

1. Identity Laws P T P

P F P

 

 

2. Domination Laws P T T

P F F

 

 

3. Double Negation  P P  

4. Idempotent Laws P P P

P P P

 

 

5. Commutative Laws P Q Q P

P Q Q P

  

  

6. Associative Laws    

   

P Q R P Q R

P Q R P Q R

    

    

35

7. Distributive Laws      

     

P Q R P Q P R

P Q R P Q P R

     

     

8. De Morgan’s Laws  

 

P Q P Q

P Q P Q

    

    

9. Absorption Laws  

 

P P Q P

P P Q P

  

  

10. Negation Laws

(Inverse / Complement)

P P T

P P F

 

 

11. Equivalance Law    P Q P Q Q P    

12. Implication Law P Q P Q   

13. Biconditional Property    P Q P Q P Q     

14. Contrapositive of Conditional
statement

P Q Q P   

Note that while taking negation of compound statement ‘every’ or
‘All’ is interchanged by ‘some’ & ‘there exists’ is interchanged by ‘at least
one’ & vice versa.

Example 8 : If P : “This book is good.”

Q : “This book is costly.”

Write the following statements in symbolic form.

a) This book is good & costly.

b) This book is not good but costly.

c) This book is cheap but good.

d) This book is neither good nor costly.

e) If this book is good then it is costly.

Answers :

a) P Q

b) P Q 

c) Q P 

d) P Q 

e) P Q

2.4.2 Functionally complete set of Connectives :

We know that there are five logical connectives , , , and     .

But some of these can be expressed in terms of the other & we get a
smaller set of connectives.

36

The set containing minimum number of connectives which are
sufficient to express any logical formula in symbolic form is called as the
functionally complete set of connectives.

There are following two functionally complete set of connectives.

(1)  ,  is complete set connectives.

Here, the  can be expressed using &  .

 P Q P Q    

 P Q   

The  can be expressed in terms of ,  .

P Q P Q    

The  can be expressed in terms of , 

 P  Q (P Q) Q P)   

 
(P Q) Q P)

(P Q) Q P)

    

      

 ,   is a functionally complete set of connectives.

Similarly, you can prove that  ,   is complete set of connectives.

2.5 LOGICAL IMPLICATIONS:

A proposition P (p, q, ……..) is said to logically imply a
proposition Q (p, q, …….) written,

P (p, q, ……..)  Q (p, q, …….) if Q (p, q, …….) is true
whenever P (p, q, …….) is true.

Example 9 : P (P Q) 

Solution :

Consider the truth table for this

P Q P Q

T T T

T F T

F T T

F F F

37

Observe that if P is true (T) in rows 1 and 2 then P Q is also true (T) .

 P P Q  .

If Q (p, q, …….) is true whenever P (p, q, …….) is true then the

argument.  P p, q,  ├  Q p, q,  is valid and conversely.

i.e. the argument P├Q is valid iff the conditional statement P Q

is always true, i.e. a tautology.

2.5.1 Logical Equivalence Involving Implications :

Let P & Q be two statements.

The following table displays some useful equivalences for
implications involving conditional and biconditional statements.

Sr. No. Logical Equivalence involving implications

1 P Q P Q   

2 P Q Q P   

3 P Q P Q   

4  P Q P Q   

5  P Q P Q   

6      P Q P r P Q r     

7      P r Q r P Q r     

8      P Q P r P Q r     

9      P r Q r P Q r    

10    P Q P Q Q P    

11 P Q P Q    

12    P Q P Q P Q     

13  P Q P Q   

All these identities can be proved by using truth tables.

2.6 NORMAL FORM AND TRUTH TABLES :

2.6.1 Well Formed Formulas : (wff)

A compound statement obtained from statement letters by using
one or more connectives is called a statement pattern or statement form.
thus, if P, Q, R, ……. are the statements (which can be treated as
variables) then any statement involving these statements and the logical

38

connectives , , , ,     is a statement form or a well formed formula

or statement pattern.

Definition : A propositional variable is a symbol representing any
proposition. Note that a propositional variable is not a proposition but can
be replaced by a proposition.

Any statement involving a propositional variable and logical
connectives is a well formed formula.

Note : A wff is not a proposition but we substitute the proposition in place
of propositional variable, we get a proposition.

E.g.      P Q Q R Q, P Q        etc.

2.6.1 (a) Truth table for a Well Formed Formula :

If we replace the propositional variables in a formula  by
propositions, we get a proposition involving connectives. If  involves n
propositional constants, we get 2n possible combination of truth variables
of proposition replacing the variables.

Example 10 : Obtain truth value for    P Q Q P     .

Solution : The truth table for the given well formed formula is given
below.

P Q P Q Q P 

T T T T T

T F F T F

F T T F F

F F T T T

2.6.1 (b) Tautology :

A tautology or universally true formula is a well formed formula,
whose truth value is T for all possible assignments of truth values to the
propositional variables.

Example 11 : Consider P P , the truth table is as follows.

P P P P

T F T

F T T

39

P P   always takes value T for all possible truth value of P, it is a
tautology.

2.6.1 (c) Contradiction :

A contradiction or (absurdity) is a well formed formula whose
truth value is false (F) for all possible assignments of truth values to the
propositional variables.

Thus, in short a compound statement that is always false is a
contradiction.

Example 12 : Consider the truth table for P P .

P P P P

T F F

F T F

P P  always takes value F for all possible truth values of P, it is a
contradiction.

2.6.1. (d) Contingency :

A well formed formula which is neither a tautology nor a
contradiction is called a contingency.

Thus, contingency is a statement pattern which is either true or
false depending on the truth values of its component statement.

Example 13 : Show that  p q  and p q  are logically equivalent.

Solution : The truth tables for these compound proposition is as follows.

1 2 3 4 5 6 7 8

P Q P Q P Q  P Q  P Q  6 7

T T F F T F F T

T F F T T F F T

F T T F T F F T

F F T T F T T T

We cab observe that the truth values of  p q  and p q 

agree for all possible combinations of the truth values of p and q.

40

It follows that    p q p q     is a tautology, therefore the

given compound propositions are logically equivalent.

Example 14 : Show that p q and p q  are logically equivalent.

Solution : The truth tables for these compound proposition as follows.

p q p p q  p q

T T F T T
T F F F F
F T T T T
F F T T T

As the truth values of p q and p q  are logically equivalent.

Example 15 : Determine whether each of the following form is a
tautology or a contradiction or neither :

i)    P Q P Q  

ii)    P Q P Q   

iii)    P Q P Q   

iv)    P Q P Q  

v)  P P Q Q    

Solution:

i) The truth table for    p q p q  

P q p q p q    p q p q  

T T T T T

T F F T T

F T F T T

F F F F T

 All the entries in the last column are ‘T’.

    p q p q   is a tautology.

41

ii) The truth table for    p q p q    is

1 2 3 4 5 6

p q p q p q P q  3 6

T T T F F F F

T F T F T F F

F T T T F F F

F F F T T T F

The entries in the last column are ‘F’. Hence    p q p q    is

contradiction.

iii) The truth table is as follows.

p q p q p q  p q    p q p q   

T T F F F T T

T F F T F F T

F T T F F T T

F F T T T T T

 All entries in last column are ‘T’.

    p q p q    is a tautology.

iv) The truth table is as follows.

p q q p q p q    p q p q  

T T F F T F

T F T T F F

F T F F T F

F F T F T F

All the entries in the last column are ‘F’. Hence it is contradiction.

42

v) The truth table for  p p q q    

p q q p q  p p q   p p q q    

T T F F F T

T F T T T F

F T F T F T

F F T T F T

The last entries are neither all ‘T’ nor all ‘F’.

  p p q q     is a neither tautology nor contradiction. It is a

contingency.

2.6.2 Normal Form of a well formed formula :

One of the main problem in logic is to determine whether the given
statement is a tautology or a contradiction. One method to determine it is
the method of truth tables. Other method is to reduce the statement form
to, called normal form.

If P & Q are two propositional variables we get various well
formed formula.

The number of distinct truth values for formulas in P and Q is 24.
Thus there are only 16 distinct formulae & any formula in P & Q is
equivalent to one of these formulas.

Here we give a method of reducing a given formula to an
equivalent form called a ‘normal form’. We use ‘sum’ for disjunction,
‘product’ for conjunction and ‘literal’ either for P or for P , where P is
any propositional variable.

Elementary Sum & Elementary Product :

An elementary sum is a sum of literals. An elementary product is a
product of literals.

e.g. P Q , P R are elementary sum P Q , P Q  are

elementary products.

Disjunctive Normal Form (DNF) :

A formula is in disjunctive normal form if it is a sum of elementary
products.

e.g.    P Q R , P Q R     

43

A conjunction of statement variables and their negations are called
as fundamental conjunctions. It is also called min term.

e.g. P, P , P Q

Construction to obtain a Disjunctive Normal Form of a given formula

The following procedure is used to obtain a disjunctive normal form.

1. Eliminate  and  using logical identifies.

2. Use De-Morgans laws to eliminate  before sums or products.

The resulting formula has  only before propositional variables
i.e. it involves sum, product and literals.

3. Apply distributive laws repeatedly to eliminate product of sums.

The resulting formula will be sum of products of literals i.e. sum of
elementary products.

Example 16 :

Obtain a disjunctive normal form of

1. ()P P Q 

2. () ()P Q P Q   

3. (()) ()P Q R P Q   

Answer :

1) Consider, ()P P Q 

()P P Q    (Implication law)

() ()P P P Q   (Distributive law)

This is a disjunctive normal form of the given formula.

2) Using Implication law P Q P Q  

   P Q P Q    

   P Q P Q      Implication law

   P Q P Q      Commutative law

   P Q P P Q Q        Distributive law

   P P Q P Q Q        Associative law

   P Q P Q     

This is required disjunctive normal form

44

3)     p Q R P Q   

    P Q R P Q      Implication law

    P Q R P Q       De-Morgans law

      P Q P R P Q       Distributive law

     P Q P R P Q       Associative law

This is the disjunctive normal form of the given formula.

 Note that for the same formula we may get different disjunctive
normal forms. So we introduce one or more normal forms called the
principle disjunctive normal form or sum of products canonical form
in the next definition. The advantage of constructing principle
disjunctive normal form is that for a given formula principle
disjunctive normal form is unique.

 Two forms are said to be equivalent iff their principle disjunctive
normal forms consider.

* Min term :
A min term in n propositional variables P1, P2, ……, Pn is

1 2 nQ Q Q   where each Qi is either Pi or  Pi.

e.g.
The min terms in P1 & P2 are P1  P2, P1   P2,  P1  P2,
P1   P2,

In general the number of min terms in n propositional variables
is 2n.

2.6.3 Principle Disjunctive Normal Form :

A formula  is in principle disjunctive normal form if  is a sum
of min terms.

Steps to Construct Principle Disjunctive Normal Form of a given
Formula : -

1. First obtain the disjunctive normal form for given formula.

2. Drop elementary products, which are contradiction such as
()P P

3. If Pi &  Pi are not present in an elementary product  , replace 

by    i iP P  

45

4. Use the above step until all elementary products are reduced to
sum of min terms.

Use idempotent laws to avoid repetition of min terms.

Example 17 :

Obtain the canonical sum of product form i.e. principle disjunctive
normal form of

1. ()P P Q R    

2. whose truth table is given below

Row No. P Q R 
1 T T T T

2 T T F F

3 T F T F

4 T F F T

5 F T T T

6 F T F F

7 F F T F

8 F F F T

Answer :

1)  is already in disjunctive normal form. There are no
contradictions. So we have to introduce missing - variables.

P Q R   in  is a min - term.

As () ()P P Q P Q   

       P P Q R P Q R P Q R P Q R            

Therefore the canonical sum of products form of  is

       P Q R P Q R P Q R P Q R          

2) For given  , we have T in column corresponding to rows 1, 4, 5
and 8. The min terms corresponding to these rows are

,P Q R P Q R P Q R       and P Q R  

 The principle disjunctive normal form of  is

       P Q R P Q R P Q R P Q R            

Fundamental disjunction (Max term)
A disjunction of statement variables and (or) their negations are

called as fundamental disjunctions. It is also called max term.

e.g. , , , ,P P P Q P Q P P Q     

46

Conjunctive Normal Form : -
A statement form which consists of a conjunction of a fundamental

disjunction is called a conjunctive normal form.

e.g.  ,P Q P Q P  

If  is in disjunctive normal form then  is in conjunctive normal form.

Maxterm
A max term in n propositional variables 1 2, nP P P is

1 2 nQ Q Q   where each Qi is either Pi or ip

2.6.4 Principal Conjunctive Normal form :

A formula  is in principle conjugate normal form if  is a product
of max terms. For obtaining the principle conjunctive normal form of 
we can construct the principle disjunctive normal form of   and apply
negation.

Example 18

Obtain a conjunctive normal form of

1.  P Q R  

2.    P R P Q    

1) Consider

 P Q R  

  P Q R   

  P Q R    Implication law

  P Q R     De-Morgans law

 P Q R   De-Morgans law & Double negation

 P Q R   

Hence, this is the required conjunctive normal form.

The principal conjugate normal form of  is

  p Q R P Q R      

2)    P R P Q    

Since, we know that
P Q P Q   Implication law

() ()P Q P Q Q P     Implication law

      P R P Q Q P       

47

       P R P Q Q P         

      P R P Q Q P       

     P R P Q Q P       

Which is required conjunctive normal form.

2.7 PREDICATES AND QUANTIFIERS

2.7.1 Predicates : A predicate is a statement containing one or more
variables.

Proposition :
If values are assigned to all the variables in a predicate, the

resulting statement is a proposition.
e.g.

1. 9x  is a predicate
2. 4 < 9 is a proposition

Propositional Function :

Let a be a given set. A propositional function (or : on open
sentence or condition) defined on A is an expression P(x) which has the
property that P(a) is true or false for each a A .

The set A is called domain of P(x) and the set Tp of all elements of
A for which P (a) is true is called the truth set of P(x).

i.e. { : , ()pT x x A p x  is true} or pT = {x : p(x)} Another use of

predicates is in programming Two common constructions are “if P(x),
then execute certain steps” and “while Q(x), do specified actions.” The
predicates P(x) and Q(x) are called the guards for the block of
programming code often the guard for a block is a conjunction or
disjunction.

e.g. Let A = {x / x is an integer < 8}
Here P(x) is the sentence “x is an integer less than 8”.

The common property is “an integer less than 8”.
 P(1) is the statement “1 is an integer less than 8”.
 P(1) is true,  1 A etc.

2.7.2 Quantifiers :

The expressions ‘ for all’ and ‘there exists’ are called quantifiers.
The process of applying quantifier to a variable is called quantification of
variables.

48

Universal quantification :

The universal quantification of a predicate P(x) is the statement,
“For all values of x, P(x) is true.”

The universal quantification of P(x) is denoted by v for all x P(x).

The symbol v is called the universal quantifier.
e.g.

1) The sentence P(x) : - (-x) = x is a predicate that makes sense for
real numbers x.

The universal quantification of P(x), v x P(x) is a true statement
because for all real numbers, -(- x) = x.

2) Let Q(x) : x + 1 < 5, then v Q(x) : x + < 5 is a false statement, as
Q(5) is not true. Universal quantification can also be stated in English as
“for every x”, “every x”, or “for any x.”

Existential quantification -
The existential quantification of a predicate P(x) is the statement

“There exists a value of x for which P(x) is true.”

The existential quantification of P(x) is denoted ()xP x . The

symbol  is called the existential quantifier.

e.g.
1) Let : 1 4Q x   . The existential quantification of Q(x), ()xQ x

is a true statement, because Q(2) is true statement.

2) The statement , y + 2 = yy is false. There is no value of y for

which the propositional function y+2=y produces a true statement.

Negation of Quantified statement :

v   x a p(x) x A p(x)    

or v x p(x) x p(x)  

This is true for any proposition p(x). DeMorgan’s Law.

2.7.3 The result for universal and existential quantifiers is as
follows.

I)    () ()x A p x x A p x      

In other words, the following two statements are equivalent.

i) It is not true that, for all ,a A P(a) is true.

49

ii) There exists an ,a A such that P(a) is false.

II)    () ()x A p x x A p x      

That is, the following two statements are equivalent.

i) It is not true that for some ,a A P(a) is true.

ii) For all ,a A P(a) is false.

Other several properties for the universal and existential quantifiers
are………

III) (() ()x p x Q x v   () ()xP x xq x

IV) (() ()) () ()x P x Q x xP x xQ x    is a tautology.

V) ((()) (()) (() ())xp x xQ x x p x Q x      is a tautology.

VI) (() () () ()x P x Q x xP x xQ x    

VII) (() () (() ()x P x Q x x P x xQ x   

Example 19 :

Express the statement using quantifiers. “Every student in your school has
a computer or has a friend who has a computer.”

Solution :

Let c(x) : “x has a computer”
F(x,y) : “x and y are friends”

 We have
(() (() (,))x c x y c y F x y  

Example 20 :

Express following using quantifiers.
i) There exists a polar bear whose colour is not white.
ii) Every polar bear that is found in cold region has a white colour.

Solution :

Let A(x) : x has a white colour
B(x) : x is a polar bear.
C(x) : x is found in cold region.
Over the universe of animals.

50

i) There exists a polar bear whose colour is not white.
(() ())x B x A x 

ii) Every polar bear that is found in cold regions has a white colour.
((() ()) ())x B x c x A x   .

2.8 THEORY OF INFERENCE FOR THE PREDICATE
CALCULAS

If an implication P Q is a tautology where P and Q may be

compound statement involving any number of propositional variables we

say that Q logically follows from P. Suppose 1 2(,)nP P P P Q   . Then

this implication is true regardless of the truth values of any of its
components. In this case, we say that q logically follows from P1,
P2…..,Pn.

Proofs in mathematics are valid arguments that establish the truth
of mathematical statements.

To deduce new statements from statements we already have, we
use rules of inference which are templates for constructing valid
arguments. Rules of inference are our basic tools for establishing the truth
of statements. The rules of inference for statements involving existential
and universal quantifiers play an important role in proofs in Computer
Science and Mathematics, although they are often used without being
explicitly mentioned.

2.8.1 Valid Argument :

An argument in propositional logic is a sequence of propositions.

All but the final propositions in the argument are called hypothesis
or Premises.

The final proposition is called the conclusion.

An argument form in propositional logic is a sequence of
compound propositions - involving propositional variables.

An argument form is valid if no matter which particular
propositions are substituted for the propositional variables in its premises,
the conclusion is true if the premises are all true.

2.8.2 Rules of Inference for Propositional logic

We can always use a truth table to show that an argument form is
valid. Arguments based on tautologies represent universally correct

51

method of reasoning. Their validity depends only on the form of
statements involved and not on the truth values of the variables they
contain such arguments are called rules of inference.

These rules of inference can be used as building blocks to
construct more complicated valid argument forms

e.g.
Let P: “You have a current password”

Q: “You can log onto the network”.

Then, the argument involving the propositions,
“If you have a current password, then you can log onto the

network”.

“You have a current password” therefore: You can log onto the
network” has the form …
.

P Q

P

Q





Where  is the symbol that denotes ‘therefore we know that when P & Q
are proposition variables, the statement (())P Q P Q   is a tautology.

 This is valid argument and hence is a rule of inference, called modus
ponens or the law of detachment.

(Modus ponens is Latin for mode that affirms)
The most important rules of inference for propositional logic are as

follows…..

Rule of Inference Tautology Name

1) P

P Q

Q





(())P P Q Q   Modus ponens

2) Q

P Q

P







 ()Q P Q P     Modus tollens

3) P Q

Q R

P R





 

 () () ()P Q Q R P R     Hypothetical
syllogism

4) P Q

P

Q







 ()P Q P Q   Disjunctive
syllogism

52

5) P

PVQ

()P P Q  Addition

6) P Q

P





()P Q P  Simplification

7) P

Q

P Q 

(() ())P Q P Q   Conjunction

8) P Q

P R

Q R

 

 

 () () ()P Q P R Q R      Resolution

Example 21 :

Show that R S can be derived from the premises
(i) ()P Q S  (ii) ()R P  and iii) Q.

Solution :

The following steps can be used to establish the conclusion.

Steps Reason

1 ()P Q S  Premise (i)

2 R P Premise (ii)

3 R P Line 2, implication

4 ()R Q S  Hypothetical Syllogism

5  R Q S   Line 4, implication

6  R Q S     Line 5, implication

7 Q Premise (iii)

8 R S  Line 6, 7 and Disjunctive syllogism

9 R S Line 8, implication

Hence the proof :

Example 22 :

Test the validity of the following arguments :
1. If milk is black then every crow is white.
2. If every crow is white then it has 4 legs.
3. If every crow has 4 legs then every Buffalo is white and brisk.
4. The milk is black.
5. So, every Buffalo is white.

53

Solution :

Let P : The milk is black
Q : Every crow is white
R : Every crow has four legs.
S : Every Buffalo is white
T : Every Buffalo is brisk

The given premises are
(i) P  Q
(ii) Q  R
(iii) R  S T
(iv) P

The conclusion is S. The following steps checks the validity of argument.
1. P  Q … premise (1)
2. Q  R … Premise (2)
3. P  R … line 1. and 2. Hypothetical syllogism (H.S.)
4. R  S T … Premise (iii)

5. P  S T … Line 3. and 4.. H.S.
6. P … Premise (iv)
7. S T Line 5, 6 modus ponets
8. S Line 7, simplification
 The argument is valid

Example 23 :
Consider the following argument and determine whether it is valid or not.
Either I will get good marks or I will not graduate. If I did not gradute I
will go to USA. I get good marks. Thus, I would not go to USA.

Solution :
Let P : I will get good marks.

Q : I will graduate.
R : I will go to USA

The given premises are
i) P V  Q
ii)  Q  R
iii) P

The conclusion is  R.
The following steps checks is validity.

Steps Reason
1. P V  Q … premise (i)
2.  P V  Q …Double negation
3.  P  Q Line 2, Implication
4.  Q  R … premise (ii)

54

5.  P  R Line 3, 4, H.S.
6. P Premise (iii)
7. R Line 5 implication and line 6
8. Conclusion is R or 

R
Line 7 simplification

 The argument is not valid

2.9 MATHEMATICAL INDUCTION

Here we discuss another proof technique. Suppose the statement to
be proved can be put in the from  nn0. P(n), where n0 is some fixed
integer.

That is suppose we wish to show that P(n) is true for all integers n  n0.

The following result shows how this can be done.
Suppose that
(a) P(n0) is true and
(b) If P(K) is true for some K  n0, then P(K + 1) must also be

true. The P(n) is true for all n  n0.

This result is called the principle of Mathematical induction.

Thus to prove the truth of statement  nn0. P(n), using the
principle of mathematical induction, we must begin by proving directly
that the first proposition P(n0) is true. This is called the basis step of the
induction and is generally very easy.

Then we must prove that P(K)  P(K + 1) is a tautology for any
choice of K  n0. Since, the only case where an implication is false is if the
antecedent is true and the consequent is false; this step is usually done by
showing that if P(K) were true, then P(K + 1) would also have to be true.
This step is called induction step.

In short we solve by following steps.
1. Show that P(1) is true.
2. Assume P(k) is true.
3. Prove that P(k +1) is true using P(k)

Hence P(n) is true for every n.

Example 24 :
Using principle of mathematical induction prove that…

1) 1 + 2 + 3 + ….. + n =
2

)1n(n 
for all n 1

2) n3 - n is divisible by 3 for nZ+

3) 2n > n for all positive integers n.

55

4) n!  2n–1

5) If A1, A2, …… An be any n sets then
1 1

n n

i i
i i

A A
 

   
 
 

Solution :

For all n, 1) Let
(1)

() :1 2 3 , 1
2

n n
P n n n

 
        

Step 1 : Here n0 = 1

We must show that P (1) is true.

P (1) is the statement

2

)11(1
1




Which is clearly true.

Hence P(1) is true.

Step 2 :
Assume P(K) is true for K  n.

 P(K)  1+ 2 + ….. + K =
2

)1K(K 
K  1 …..(1)

Step 3 :
To show that P(K + 1) is true.

 P(K+1) = 1 + 2 + ….. + (K + 1) =
2

)1)1K)((1K(

Consider,
1 + 2 + ….. + (K + 1) = 1 + 2 + ….. + K + (K +1)

=
2

)1K(K 
+ (K + 1) using eqn. (1)

 1 + 2 + ….. + (K + 1) =
2

)1K(2)1K(K 

=
(1) (2)

2

K K  

=
2

)1)1K(()1K(

Which is RHS of P(K + 1)
Thus, P(K + 1) is true.

 By principle of mathematical induction it follows that P(n) is true
for all n1.

 1 + 2 + ….. + n =
2

)1n(n 

2) Let P(n) : n3 – n is divisible by 3.

56

Step 1 : We note that,
P(1) : 13 – 1 = 0 is divisible by 3
 P(1) is true.

Step 2 :
Assume P(K) is true for K  n
 P(K): K3 – K is divisible by 3.
We can write K – k = 3m for m  N. ……(1)

Step 3 :
We prove that P(K + 1) is true.
P(K + 1); (K + 1)3 – (K + 1) is divisible by 3.
Consider

(K + 1)3 – (K + 1) = K3 + 3K2 + 3K + 1 – K – 1
= K3 + 3K2 + 2K
= 3m + K + 3K2 + 2K (using (1))
= 3(m + K + K2)

Hence (K + 1)3 – (K + 1) is divisible by 3.

Thus, P(K + 1) is true when P(K) is true.

 By principle of mathematical induction the statement is true for every
positive integer n.

3) Let P(n) : 2n > n  positive integer n.

Step I : For n = 1, 21 = 2 > 1
Hence P(i) is true.

Step II : Assume P(K) is true for every positive integer K i.e.
2K > K …..(1)

Step III : To show that P(K + 1) is true
From (1),

2K > K

Multiplying both sides by 2, we get,
2.2K > 2.K

 2K+1 > 2K
 2K+1 > K + K > K + 1

 P(K + 1) is true when P(K) is true. Hence, by principle of mathematical
induction, P(n) is true for every positive integer n.
 2n > n for positive integer n.

4) Let P(n) : n!  2n–1

57

Step I : For n = 1
1! = 1  2 1–1 = 20 = 1

 P(1) is true.

Step II : Assume P(K) is true for some K < n.
 K!  2k–1 …..(1)

Step III : Prove that P(K + 1) is true.
Consider K!  2k–1 (from (1))
As K + 1  2
 K!  2k–1 and K + 1  2

Taking the product we get,
K!  (K + 1)  2k–1  2

 (K + 1)K!  2k–1+1

 (K + 1)!  2k

Hence P(K + 1) is true.
 By principle of mathematical induction P(n) is true for every n.

5) Let P(n) : 
n

1i
i

n

1i
i AA

















Step I : For n = 2,

LHS =   2121

2

1i
i AAAAA  















& RHS = 21
2

1i
i AAA  



 LHS = RHS
Hence P(2) is true.

Step 2 : Assume P(K) is true for some K < n

 
k

1i
i

k

1i
i AA
















…..(1)

Step 3 : Prove that P(K + 1) is true.
Consider

1

1

k

i
i

A




 
 
 
 = 1 1

1 1

k k

i k i k
i i

A A A A 
 

        
   
   

=  1k

k

1i
i AA 


(from (1))

=
1

1

k

i
i

A





 P(K + 1) is true

58

 By principle of mathematical induction P(n) is true for all n.

 
n

1i
i

n

1i
i AA

















2.10 UNIT AND EXERCISE :

1. Construct the truth table of

(P  Q)  ( Q  P) [Jan. 11]

2. Construct the truth table of

(Q ^ P) v (Q ^  P) [Dec. 09]

3. Construct the truth table for each of the following.

i) (P  Q) V ( P  Q)

ii) P  P

iii)  P V Q R

iv) P  ( Q V R)

v)  ()PQ P R  

4. Show that P V ()P Q R  and (P V Q)  (P V R) are logically

equivalent.

5. Show that ( P  ( Q  R)) V (Q  R) V (P  R)  R [Jan. 11]

6. Show that (P  Q)  (P V Q) is a tautology.

7. Determine whether (P  Q)  (Q  R)  (P  R) is a tautology or
contradiction or neither. [May 10]

8. Obtain the conjunctive normal form of

(P V Q)  (P  Q) [Jan. 2011]

9. Obtain conjunctive and disjunctive normal form of the following.

i) (P ^ Q) V ( P  Q  R) [May 10]

ii) ( P V  Q)  (P  Q) [Dec. 09]

iii) P V (Q  R)

iv)  (P V Q)  (P  Q)

v) QV (P   Q) V ( P   Q)

10. Objtain principle disjunctive and conjunctive normal form of

i) ( P V  Q)  (P  Q)

ii) ( P V  Q)  (P  Q)

59

11. Obtain a conjunctive normal form of  ()Q P Q P Q    

show that it is a tautology.

12. What is quantifier ? Explain with suitable examples.

13. Check the validity of following argument “If Anand has completed
M.C.A. or M.B.A. Then he is assured a good job. If Anand is assured a
good job, he is happy. Anand is not happy. So Anand has not
completed M.C.A.”

14. Show that conclusion S follows from the premises (P  Q)  (P 
R),  (Q  R) and S V P.

15. Express the following using quantifiers.

i) Every student in the college has a computer or has a friend who
has a computer.

ii) All rational numbers are real numbers.

iii) Some rational numbers are not real.

iv) All men are mortal.

v) Some women are beautiful.

16. Using Principle of mathematical induction prove that n3 + 2n is
divisible by 3 for every positive integer n.

17. Prove by mathematical induction that 2n < n! for n  4.

18. Show by mathematical induction that for all

2 2 2 2 () (2 1)
11 2 3

6

n n n
n n

  
       

19. Prove by mathematical induction that 3 / (n3 - n) for every positive
inter n.

20. Prove by mathematical induction

i) 5n + 3 is divisible by 4.

ii) n2 + n is always even.

iii) Let P(n) : 13 + 23 + 33 + …..+ n3 =
2 2(1) 4

4

n n  

a) Use P(k) to show P(k+1)

b) Is P(n) true for all n  1












60

3

SET THEORY AND RELATION

Unit Structure

3.0 Objectives

3.1 Introduction

3.2. Definitions and Representation of sets

3.3 Diagrammatic Representation of a set

3.4 The Algebra of sets

3.5 The Computer representation of sets

3.6 Relations

3.7 Representation of Relations

3.8 Types of Relations

3.9 Relations and Partition

3.10 Unit End Exercise

3.0 OBJECTIVES:

1. Definition and examples of sets.
2. Basic operations and diagrammatic representation of sets.
3. Definition of relations and diagraphs
4. Concept of partition and its relationship with equivalence relation.

3.1 INTRODUCTION:

In the school, we have already studied sets along with the
properties of the sets. In this chapter, we revise the concept and further,
discuss the concept of an algebraic property called relation.

Set Theory, branch of mathematics concerned with the abstract
properties of sets, or collections of objects. A set can be a physical
grouping, such as the set of all people present in a room; or a conceptual
aggregate, such as the set of all British prime ministers, past and present.
Each of these sets is defined by a property that its members share, but it is
possible for a set to be a completely arbitrary collection.

Set theory was first given formal treatment by the German

mathematician Georg Cantor in the 19th century. The set concept is one of

61

the most basic in mathematics, explicitly or implicitly, in every area of
pure and applied mathematics, as well as Computer science.

Relationships between elements of sets occur in many contexts.

We deal with many relationships such as student’s name and roll no.,

teacher and her specialisation, a person and a relative (brother – sister,
mother – child etc.) In this section, we will discuss mathematical approach

to the relation. These have wide applications in Computer science (e.g.
relational algebra)

3.2. DEFINITIONS AND REPRESENTATION OF SETS:

Definition 3.2.1: Set is an unordered collection of objects.
The object in a set is called as an element or member.

We denote sets by capital letters such as A, B, C and elements by small
letters. Typically sets are described by two methods

i. Roster or list method:
In this method, all the elements are listed in braces. E.g.
A = {2, 3, 5, 7, 11, 13 }
N = { 2, 4, 6, ... }

ii. Set-Builder method:
In this method, elements are described by the property they
satisfy. E.g.
A = { x : x is a prime number less than 15}
B = { x : x = 2n, n  N }

Definition 3.2.2: A set containing no element is called as an empty set.
E.g. Set of even prime numbers greater than 10.
Empty set is denoted by { } or .

Definition 3.2.3: A set A is said to be a subset of set B, if every element
of A is also an element of B. It is denoted by ‘’
A  B. E.g. A = {1, 2, 3, 4 } and B = { 1, 2, 3, 4, 7, 8 } Then A B.

Definition 3.2.4: A set A is said to be a superset of set B, if B is a subset
of A. It is denoted by A  B.

Definition 3.2.5: A set is A is said to be a proper subset of B, if A is a
subset of B and there is at least one element in B, which is not an element
of A. Set A explained in Definition 3.2.3, is a proper subset of B.

Definition 3.2.6: A set which contains all objects under consideration is
called as Universal set and is denoted by U.

62

Note: Two sets are said to be equal if and only if they have same
elements. E.g. If A = {2, 5, 7, 9 } and B = { 5, 2, 7, 9 }, then A and B are
equal.

Now we shall discuss various operations on sets. For this discussion, let U
be universal set and let A and B be two subsets of U.

Definition 3.2.7: Set of all elements in A or in B or in both, is defined as
union of A and B and is denoted by A  B.

E.g. If A = {1, 2, 3, 5, 7} and B = {2, 5, 10 11}, then
A  B = {1, 2, 3, 5, 7, 10, 11}

Definition3.2.8: Set of all elements, that are common in A as well as in B,
is defined as intersection of A and B and is denoted by A  B.

E.g. If A = {1, 2, 3, 5, 7} and B = {2, 5, 10, 11}, then
A  B = {2, 5}.

Definition 3.2.9: Set of all elements, that are in A, but not in B, is called as
difference between A and B and denoted by
A – B. E.g. If A = {1, 4,7,8,9} and B = {4,9,11,13} then, A – B = {1,7, 8}.

Definition 3.2.10: The total number of elements in a set is called as
cardinality of a set. E.g. If A = {2, 3, 5, 7, 11, 13} then, Cardinality of A,
denoted by | A |, is 6. If a set is infinite, then its cardinality is infinity.

Definition 3.2.11: If U is a universal set and A is its subset, then
complement of A, denoted by AC, is all elements of U, that are not in A.
E.g. If U = { x : x  N, x  15 } and
A = {x : x  U and 3 | x }, then AC = { 1, 2, 4, 5, 7, 8, 10, 11, 13, 14}.

Definition 3.2.12: A power set of a set A, denoted by P(A), is set of all
subsets of A. E.g. If A = { 1, 2, 3 }, then,
P(A) = { , {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3},{1, 2, 3}}.

Note: If number of elements in A is n, then the number of elements in the
power set of A is 2n.

Definition 3.2.13: Let A and B be two sets. The product set of A and B (or
Cartesian product of A and B), denoted by
A  B, is set of all ordered pairs from A and B. Thus,
A  B = {(a, b): a  A, b  B}.
E.g. Let A = { 1, 2, 3 } and B = { 4, 5} then
A  B = {(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)}.

3.3 DIAGRAMMATIC REPRESENTATION OF A SET:

63

AC

British mathematician, John Venn, devised a simple way to
represent set theoretic operations diagrammatically. These diagrams are
named after him as Venn Diagrams.

Universal set is represented by a rectangle and its subsets using a
circle within it.

In the following figures, basic set theoretic operations are
represented using Venn diagrams.

Figure 3.1: A is a subset of universal set U.

Figure 3.2: A B

Figure 3.3: A  B : Entire shaded region
A  B : Dark gray shaded region

U

A

U

A
B

64

Figure 3.4: AC, the shaded region

Figure 3.5: A – B, the shaded region

3.4 THE ALGEBRA OF SETS:

The following statements are basic consequences of the above definitions,

with A, B, C, ... representing subsets of a universal set U.

1. A  B = B A. (Union is commutative)
2. A  B = B  A. (Intersection is commutative)

3. (A  B)  C = A  (B  C). (Union is associative)

4. (A  B)  C = A  (B  C). (Intersection is associative)
5. A   = A.

6. A   = .

7. A  U = U.
8. A  U = A.

9. A  (B  C) = (A B)  (A  C).(Union distributes over intersection)

10. A  (B  C) = (A B)  (A  C). (Intersection distributes over union)
11. A  AC = U.

12. A  AC = .

13. (A  B)C = AC  BC. (de’ Morgan’s law)
14. (A  B)C = AC  BC. (de’ Morgan’s law)

15. A  A = A  A = A.

16. (AC)C = A.
17. A – B = A  BC.

18. (A – B) – C = A – (B  C).

19. If A  B = , then (A  B) – B = A.
20. A – (B  C) = (A – B)  (A – C).

This algebra of sets is an example of a Boolean algebra, named
after the 19th-century British mathematician George Boole, who applied
the algebra to logic. The subject later found applications in electronics.

A

A – B B

65

3.5 THE COMPUTER REPRESENTATION OF SETS:

There are various ways to represent sets using a computer. Modern
programming languages, such as JAVA, have predefined collection class
to represent the set. In such class, we need to insert the set elements and
there are various class operations defined for the algebraic operations on
the set.

In this section, we shall present a method for storing elements
using the arbitrary ordering of the elements of a universal set.

Assume that the universal set U is finite (and of reasonable size so
that the number of elements in U are not larger than the memory size).
First, specify the arbitrary ordering of elements of U, such as a1, a2, ..., ...,
an. Represent a subset A of U with the bit string of length n, where the ith

bit in this string is 1 if ai belongs to A and is 0 otherwise.

E.g. Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and A be subset of U containing
elements that are multiples of 3 or 5. Thus,

A = {3, 5, 6, 9, 10}. We shall represent elements of U as per the order
given in the above set. Then, A represents a bit string 0010110011.

With this, we have completed basic discussion on set theory and
now is the time to check the understanding for the same.

3.6 RELATIONS:

Relationship between elements of sets is represented using a
mathematical structure called relation. The most intuitive way to describe
the relationship is to represent in the form of ordered pair. In this section,
we study the basic terminology and diagrammatic representation of
relation.

Definition 3.6.1: Let A and B be two sets. A binary relation from A to B
is a subset of A  B.

Note 3.6.1: If A, B and C are three sets, then a subset of
ABC is known as ternary relation. Continuing this way
a subset of A1A2...An is known as n – ary relation.

Note3.6.2: Unless or otherwise specified in this chapter
a relation is a binary relation.

Let A and B be two sets. Suppose R is a relation from A to B (i.e. R
is a subset of A  B). Then, R is a set of ordered pairs where each first
element comes from A and each second element from B. Thus, we denote

66

it with an ordered pair (a, b), where a  A and b  B. We also denote the
relationship with a R b, which is read as a related to b. The domain of R is
the set of all first elements in the ordered pair and the range of R is the set
of all second elements in the ordered pair.

Example 3.1: Let A = { 1, 2, 3, 4 } and B = { x, y, z }. Let
R = {(1, x), (2, x), (3, y), (3, z)}. Then R is a relation from A to B.

Example 3.2: Suppose we say that two countries are adjacent if they have
some part of their boundaries common. Then, “is adjacent to”, is a relation
R on the countries on the earth. Thus, we have, (India, Nepal)  R, but
(Japan, Sri Lanka)  R.

Example 3.3: A familiar relation on the set Z of integers is “m divides n”.
Thus, we have, (6, 30)  R, but (5, 18)  R.

Example 3.4: Let A be any set. Then A  A and  are subsets of A  A and
hence they are relations from A to A. These are known as universal
relation and empty relation, respectively.

Note 3.6.3: As relation is a set, it follows all the algebraic
operations on relations that we have discussed earlier.

Definition 3.6.2: Let R be any relation from a set A to set B. The inverse
of R, denoted by R–1, is the relation from B to A which consists of those
ordered pairs, when reversed, belong to R. That is:
R–1 = {(b, a) : (a, b)  R}

Example 3.5: Inverse relation of the relation in example 1.1 is, R–1 = {(x,
1), (x, 2), (y, 3), (z, 3)}.

3.7 REPRESENTATION OF RELATIONS:

Matrices and graphs are two very good tools to represent various
algebraic structures. Matrices can be easily used to represent relation in
any programming language in computer. Here we discuss the
representation of relation on finite sets using these tools.

Consider the relation in Example 3.1.

67

0004

1103

0012

0011

zyx

Fig. 3.1

Thus, if a R b, then we enter 1 in the cell (a, b) and 0 otherwise.
Same relation can be represented pictorially as well, as follows:

Fig 3.2

Thus, two ovals represent sets A and B respectively and we draw an arrow
from a  A to b  B, if a R b.

If the relation is from a finite set to itself, there is another way of pictorial
representation, known as diagraph.

For example, let A = {1, 2, 3, 4} and R be a relation from A to itself,
defined as follows:
R = {(1, 2), (2, 2), (2, 4), (3, 2), (3, 4), (4, 1), (4, 3)}
Then, the diagraph of R is drawn as follows:

Fig 3.3

The directed graphs are very important data structures that have
applications in Computer Science (in the area of networking).

Definition 3.7.1: Let A, B and C be three sets. Let R be a relation from A
to B and S be a relation from B to C. Then, composite relation RS, is a
relation from A to C, defined by,
a(RS)c, if there is some b  B, such that a R b and b bsc.

1

2

3

4

x

y

z

1 2

3 4

68

Example 3.6: Let A = {1, 2, 3, 4}, B = {a, b, c, d},
C = {x, y, z } and let R = {(1, a), (2, d), (3, a), (3, b), (3, d)} and S = {(b,
x), (b, z), (c, y), (d, z)}.

Pictorial representation of the relation in Example 3.6 can be shown as
below (Fig 1.4).

Fig 3.4

Thus, from the definition of composite relation and also from Fig 3.4, RS
will be given as below.

RS = {(2, z), (3, x), (3, z)}.

There is another way of finding composite relation, which is using
matrices.

Example 3.7: Consider relations R and S in Example 3.6. Their matrix
representations are as follows.









































100

010

101

000

0000

1011

1000

0001

SR MM

Consider the product of matrices MR and MS as follows:

R S

0 0 0

0 0 1
M M

1 0 1

0 0 0

             

Observe that the non-zero entries in the product tell us which elements are
related in RS. Hence, MRMS and MRS have same non-zero entries.

3.8 TYPES OF RELATIONS:

In this section, we discuss a number of important types of relations
defined from a set A to itself.

1

2

3

4

a

b

c

d

x

y

z

69

Definition 3.8.1: Let R be a relation from a set A to itself. R is said to be
reflexive, if for every a  A, a R a (a is related to itself).

Example 3.8: Let A = {a, b, c, d} and R be defined as follows:
R = {(a, a), (a, c), (b, a), (b, b), (c, c), (d, c), (d, d)}.
R is a reflexive relation.

Example 3.9: Let A be a set of positive integers and R be a relation on it
defined as, a R b if “a divides b”. Then, R is a reflexive relation, as a
divides to itself for every positive integer a.

Note 3.8.1: If we draw a diagraph of a reflexive relation,
then all the vertices will have a loop. Also if we represent reflexive
relation using a matrix, then all its diagonal entries will be 1.

Definition 3.8.2: Let R be a relation from a set A to itself. R is said to be
irreflexive, if for every a  A, a R a (a is not related to itself).

Example 3.10: Let A be a set of positive integers and R be a relation on it
defined as, a R b if “a is less than b”. Then, R is an irreflexive relation, as
a is not less than itself for any positive integer a.

Example 3.11: Let A = {a, b, c, d} and R be defined as follows:
R = {(a, a), (a, c), (b, a), (b, d), (c, c), (d, c), (d, d)}.
Here R is neither reflexive nor irreflexive relation as b is not related to
itself and a, c, d are related to themselves.

Note 3.8.2: If we draw a diagraph of an irreflexive relation,
then no vertex will have a loop. Also if we represent irreflexive relation
using a matrix, then all its diagonal entries will be 0.

Definition 3.8.3: Let R be a relation from a set A to itself. R is said to be
symmetric, if for a, b  A, if a R b then b R a.

Definition 3.8.4: Let R be a relation from a set A to itself. R is said to be
anti-symmetric, if for a, b  A, if a R b and b R a, then a = b. Thus, R is
not anti-symmetric if there exists a, b  A such that a R b and b R a but a
 b.

Example 3.13: Let A = {1, 2, 3, 4} and R be defined as:
R = {(1, 2), (2, 3), (2, 1), (3, 2), (3, 3)}, then R is symmetric relation.

Example 3.14: An equality (or “is equal to”) is a symmetric relation on
the set of integers.

70

Example 3.15: Let A = {a, b, c, d} and R be defined as:
R = {(a, b), (b, a), (a, c), (c, d), (d, b)}. R is not symmetric, as a R c but

c R  a . R is not anti-symmetric, because a R b and

b R a, but a  b.

Example 3.16: The relation “less than or equal to ()”, is an anti-
symmetric relation.

Definition 3.8.5: Let R be a relation defined from a set A to itself. For a, b

 A, if a R b, then b R  a , then R is said to be asymmetric relation.

Example 3.17: Let A = {a, b, c, d} and R be defined as:
R = {(a, b), (b, c), (b, d), (c, d), (d, a)}. R here is asymmetric relation.

Because a R  b but b R  a , b R  c but c R  b and so on.

Example 3.18: Relation “is less than (<)”, defined on the set of all real
numbers, is an asymmetric relation.

Definition 3.8.6: Let R be a relation defined from a set A to itself. R is said
to transitive, if for a, b, c  A, a R b and b R c, then a R c.

Example 3.19: Let A = {a, b, c, d} and R be defined as follows: R = {(a,
b), (a, c), (b, d), (a, d), (b, c), (d, c)}. Here R is transitive relation on A.

Example 3.20: Relation “a divides b”, on the set of integers, is a transitive
relation.

Definition 3.8.7: Let R be a relation defined from a set A to itself. If R is
reflexive, symmetric and transitive, then R is called as equivalence
relation.

Example 3.21: Consider the set L of lines in the Euclidean plane. Two
lines in the plane are said to be related, if they are parallel to each other.
This relation is an equivalence relation.

Example 3.22: Let m be a fixed positive integer. Two integers, a, b are
said to be congruent modulo m, written as: a  b (mod m), if m divides a –
b. The congruence relation is an equivalence relation.

Example 3.23 : Let  2, 3, 4, 5A    and let         2, 3 , 3, 3 , 4, 5 , 5,1R        .

Is R symmetric, asymmetric or antisymmetric?
Solution :

a) R is not symmetric, since  2,3 R , but  3, 2 R ,

b) R is not asymmetric since  3,3 R

c) R is antisymmetric since if a b either

71

   

 

 

 

 

, ,

2 3 3,2

3 4 3, 4

4 5 5, 4

2 2,5

a b R or b a R

R

R

R

R

   

   

   

   

   

Example 3.24 : Determine whether the relation R on a set A is reflenive,
irreflenire, symmetric, asymmetric antisymmetric or transitive.

I) A = set of all positive integers, a R b iff 2a b  .

[Dec - 02, Nov.-06, May - 07]

Solution :

1) R is reflexive because 0 2,a a a A    

2) R is not irreflexive because 1 1 0 2   for 1 A (A is the set

of all positive integers.)

3) R is symmetric because 2 2a b b a     a R b b R a     

4) R is not asymmetric because 5 4 2  and we have 4 5 2 

5 4 4 5R R     

5) R is not antisymmetric because 1 2R  & 2 1R  1 2 1 2 2R     &

2 1 2 1 2R     . But 1 2

6) R is not transitive because 5 R 4, 4 R 2 but 5 R 2

II) ,A Z a R b    iff 2a b  [May - 05]

Solution :
As per above example we can prove that R is not reflexive, R is

irrflexive, symmetric, not asymmetric, not antisymmetric & not transitive

III) Let A = {1, 2, 3, 4} and R {(1,1), (2,2), (3,3)} [Dec. - 04]

1) R is not reflexive because  4, 4 R

2) R is not irreflexive because  1,1 R

3) R is symmetric because whenever a R b then b R a.

4) R is not asymmetric because R R

5) R is antisymmetric because 2 2, 2 2 2 2R R      

6) R is transitive.

IV) Let ,A Z a R b    iff GCD (a, b) = 1 we can say that a and b are

relatively prime. [Apr. 04, Nov. 05]

1) R is not reflexive because  3,3 1 it is 3.  3,3 R 

2) R is not irreflexive because (1, 1) = 1

72

3) R is symmetric because for    , 1 , 1a b b a   . a R b b R a     

4) R is not asymmetric because (a, b) = 1 then (b, a) = 1.
a R b b R a     

5) R is not antisymmetric because 2 R 3 and 3 R 2 but 2 3 .

6) R is not transitive because 4 R 3, 3 R 2 but 4 R 2 because

(4,2) = G.C.D. (4,2) = 2 1 .

V) A = Z a R b iff 1a b  [May 03, May 06]

1) R is reflexive because 1a a    |a A  .

2) R is not irreflexive because 0 0 1  for  .
3) R is not symmetric because for 2 5 1  does not imply 5 2 1  .
4) R is not asymmetric because for (2,3)  R and also (3,2) R.
5) R is not antisymmetric because 5 R 4 and 4 R 5 but 4 5 .
6) R is not transitive because (6,45)  R, (5,4)  R but (6,47)  R.

3.9 RELATIONS AND PARTITION:

In this section, we shall know what partitions are and its
relationship with equivalence relations.

Definition 3.8.1: A partition or a quotient set of a non-empty set A is a

collection P of non-empty sets of A, such that

(i) Each element of A belongs to one of the sets in P.

(ii) If A1 and A2 are distinct elements of P, then
A1A2 = .

The sets in P are called the blocks or cells of the partition.

Example 3.23: Let A = {1, 2, 3, 4, 5}. The following sets form a partition
of A, as A = A1 A2  A3 and
A1 A1 andA2 
A1 = {1, 2}; A2 = {3, 5}; A3 = {4}.

Example 3.24: Let A = {1, 2, 3, 4, 5, 6}. The following sets do not form a
partition of A, as A = A1 A2  A3 but
A2 
A1 = {1, 2}; A2 = {3, 5}; A3 = {4, 5, 6}.

The following result shows that if P is a partition of a set A, then P can be
used to construct an equivalence relation on A.

Theorem: Let P be a partition of a set A. Define a relation R

on A as a R b if and only if a, b belong to the same block of P
then R is an equivalence relation on A.

73

Example 3.25: Consider the partition defined in Example 3.23. Then the
equivalence relation as defined from the partition is:
R={(1, 1),(1, 2),(2, 1),(2, 2),(3, 3),(3, 5), (5, 3), (5, 5), (4, 4)}.

Now, we shall define equivalence classes of R on a set A.

Theorem: Let R be an equivalence relation on a set A and let a, b  A,
then a R b if and only if R(a) = R(b), where R(a) is defined as: R(a) = {x
 A: a R x}. R(a) is called as relative set of a.

Example 3.26: If we consider an example in 3.25, we observe that, R(1) =
R(2), R(3) = R(5).

Because R (1) = {1,2}, R (2) = {1,2}, R (3) = {3,5}, R(5) = {3,5}.

Earlier, we have seen that, a partition defines an equivalence relation.
Now, we shall see that, an equivalence relation defines a partition.

Theorem: Let R be an equivalence relation on A and let P be
the collection of all distinct relative sets R(a) for a  A. Then

P is a partition of A and R is equivalence relation of this
partition.

Note: If R is an equivalence relation on A, then sets R(a) are
called as equivalence classes of R.

Example 3.27: Let A = {1, 2, 3, 4} and R = {(1, 1), (1, 2), (2, 1), (2, 2), (3,
4), (4, 3), (3, 3), (4, 4)}. We observe that R(1) = R(2) and R(3) = R(4) and

hence P = { {1, 2}, {3, 4} }.

Example 3.28: Let A = Z (set of integers) and define R as

R = {(a, b)  A  A: a  b (mod 5)}. Then, we have,

R(1) = {......,–14, –9, –4, 1, 6, 11, }

R(2) = {......,–13, –8, –3, 2, 7, 12, }

R(3) = {......,–12, –7, –2, 3, 8, 13, }

R(4) = {......,–11, –6, –1, 4, 9, 14, }

R(5) = {......,–10, –5, 0, 5, 10, 15, }.

R(1), R(2), R(3), R(4) and R(5) form partition on Z with respect to given
equivalence relation.

3.10 UNIT END EXERCISE:

1. Show that we can have A  B = A  C, without B = C.

74

2. Prove that (A  B) \ (A  B) = (A \ B)  (B \ A). (Note that, this can
be used as a definition of A  B)

3. Determine whether or not each of the following is a partition of the set
N of natural numbers.

a.[{n : n > 5}, {n : n < 5}]
b.[{n : n > 5}, { 0 }, {1, 2, 3, 4, 5}]
c.[{n : n2 > 11}, {n : n2 < 11}]

4. Suppose N = {1, 2, 3, ..., } is a universal set and
A = {x : x  6}, B = { x : 4  x  6 },
C = {1, 3, 5, 7, 9}, D = {2, 3, 5, 7, 8}

Find (i) A  B (ii) B  C (iii) A  (B  D)
(iv) (A  B)  (A  D)

5. Let A = {1, 2, 3, 4, 6 } and R be the relation on A defined by “x divides
y”, written an x | y.

a. Write R as a set of ordered pairs.
b. Draw a directed graph of R.
c. Write down the matrix of relation R.
d. Find the inverse relation R1 of R and describe it in words.

6. Give an example of relations A = {1, 2, 3} having the stated property.
a. R is both symmetric and antisymmetric
b. R is neither symmetric nor antisymmetric
c. R is transitive but R  R1 is not transitive.

7. Let A be a set of non-zero integers and let = be the relation on A  A
defined by (a, b) = (c, d), whenever ad = bc. Prove that = is an
equivalence relation.

8. Prove that if R is an equivalence relation on a set A, then R1 is also an
equivalence relation on A.

















75

4

PARTIAL ORDER RELATION

Unit Structure

4.0 Objectives

4.1 Introduction

4.2 Diagrammatic Representation of partial order relations and posets

4.3 Maximal, minimal elements and Lattices

4.4 Solved Problems

4.0 OBJECTIVES:

 Definition and examples of partial order relation.
 Representation of posets using Hasse diagram.
 Definition of a Lattice.

4.1 INTRODUCTION:

We often use relation to describe certain ordering on the sets. For
example, lexicographical ordering is used for dictionary as well as phone
directory. We schedule certain jobs as per certain ordering, such as
priority. Ordering of numbers may be in the increasing order.

In the previous chapter, we have discussed various properties
(reflexive etc) of relation. In this chapter we use these to define ordering
of the sets.

Definition 4.1.1: A relation R on the set A is said to be partial order
relation, if it is reflexive, anti-symmetric and transitive.

Before we proceed further, we shall have a look at a few examples of
partial order relations.

Example 4.1: Let A = {a, b, c, d, e}. Relation R, represented using
following matrix is a partial order relation.

76























10000

11000

11100

11110

11111

Observe the reflexive, anti-symmetric and transitive properties of
the relation from the matrix.

Example 4.2: Let A be a set of natural numbers and relation R be “less
than or equal to relation ()”. Then R is a partial order relation on A. For
any m, n, k  N, n  n (reflexive); if m n and m  n, then m = n
(anti-symmetric); lastly, if m  n and n  k, then m  k (transitive).

Definition 4.1.2: If R is a partial order relation on a set A, then A is called
as partial order set and it is denoted with (A, R). Typically this set is
termed as poset and the pair is denoted with (A, ).

4.2 DIAGRAMMATIC REPRESENTATION OF
PARTIAL ORDER RELATIONS AND POSETS:

In the previous chapter, we have seen the diagraph of a relation. In
this section, we use the diagraphs of the partial order relations, to represent
the relations in a very suitable way known as Hasse diagram.

We understand the Hasse diagrame, using following example.

Example 4.3: Let A = {a, b, c, d, e} and the following diagram represents
the diagraph of the partial order relation on A.

Fig. 4.1

c
d

b
e

a

77

Now, we shall draw Hasse diagram from the above diagrams using
following rules.

(i) Drop the reflexive loops

Fig. 4.2

(ii) Drop transitive lines

Fig. 4.3

(iii)Drop arrows

Fig. 4.4

c
d

b
e

a

c
d

b
e

a

c
d

b
e

a

78

Note 4.1: In many cases, when the graphical representation is so oriented that all
the arrow heads point in one direction (upward, downward, left to right or right to
left). A graphical representation
in which all the arrowheads point upwards, is known as Hasse diagram.

Example 4.4: `Let A = {1, 2, 3, 4, 6, 9} and relation R defined on A be “a
divides b”. Hasse diagram for this relation is as follows:

Note 4.2: The reader is advised to verify that this relation is indeed a partial order
relation. Further,
arrive at the following Hasse diagram from the diagraph of a relation as per the
rules defined earlier.

Fig.4.5

Example 4.5 : Determine the Hasse diagram of the relation on
A = {1,2,3,4,5} whose MR is given below :

1 0 1 1 1

0 1 1 1 1

0 0 1 1

0

0 0 0 0 1

RM

    
     
     
 
 

     

1

2
3

4

6

9

79

Solution :

Reflexivity is represented by 1 at diagonal place. So after
removing reflexivity R is R = {(1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4),
(3,5)}

Remove transitivity as

   1,3 3, 4 R  remove  1,4 R

   2,3 3,5 R  remove  2,5 R and so on.

        1,3 , 2,3 , 3,4 , 3,5R    

The Hasse Diagram is

Example 4.6 :

Determine matrix of partial order whose Hasse diagram is given as
follow -

Solution :

Here A = [1, 2, 3, 4, 5)

Write all ordered pairs (a, a)  a A  i.e. relation is reflexive.

3

54

1 2

4 5

32

1

80

Then write all ordered pairs in upward direction. As (1, 2) R &

(2,4)  1,4R R   since R is transitive.

                        1,1 , 2,2 , 3,3 , 4,4 , 5,5 , 1,2 , 2,4 , 2,4 , 1,4 , 1,3 , 3,5 , 1,5R            

The matrix MR can be written as -

1 1 1 1 1

0 1 1

0 0 1

0

0 0 0 0 1

RM

    
    
    
 
 

     

Now, we shall have a look at certain terms with reference to posets.

Definition 4.2.1: Let (A, ) be a partially ordered set. Elements a, b  A,
are said to be comparable, if a  b or b  a.
E.g. In example 4.4, 2 and 4 are comparable, whereas 4 and 9 are not
comparable.

Definition 4.2.2: Let (A, ) be a partially ordered set. A subset of A is
said to be a chain if every two elements in the subset are related.

Example 4.7: In the poset of example 4.4, subsets {1, 2, 4}; {1, 3, 6};
{1, 2, 6} and {1, 3, 9} are chains.

Definition 4.2.3: A subset of a poset A is said to be anti-chain, if no two
elements of it are related.

Example 4.8: In the poset of example 4.4, subsets {2, 9}; {3, 4}; {4, 6, 9}
are anti-chains.

Definition 4.2.4: A partially ordered set A is said to be totally ordered if it
is chain.

Example 4.9: Let A = {2, 3, 5, 7, 11, 13, 17, 19} and the relation defined
on A be . Then poset (A, ) is a chain.

4.3 MAXIMAL, MINIMAL ELEMENTS AND
LATTICES:

In this section, we discuss certain element types in the poset and hence a
special kind of poset, Lattice.

To understand these types, we shall refer to the following figures, i.e.
Fig.4.6 and Fig.4.7.

81

Fig. 4.7

Fig. 4.6

Definition 4.3.1: Let (A, ) be a poset. An element a  A is called a
maximal element, if for no b  A, a  b, a  b. E.g. In Fig. 4.6, j and k are
maximal elements.

Definition 4.3.2: Let (A, ) be a poset. An element a  A is called a
minimal element, if for no b  A, a  b, b  a. E.g. In Fig. 4.6, a, b and e
are minimal elements.

Definition 4.3.3: Let a, b be two elements in the poset (A, ). An element
c  A, is said to be an upper bound of a, b if a c and b  c. E.g. In Fig
4.7, 1f h are upper bounds of b and d.

Definition 4.3.4: Let a, b be two elements in the poset (A, ). An element
c  A, is said to be a least upper bound of a, b if a c and b  c and if d is
an upper bound of a, b, then c  d. E.g. In Fig 2.7, f is a least upper bound
of b and d.

Definition 4.3.5: Let a, b be two elements in the poset (A, ). An element
c  A, is said to be a lower bound of a, b if c a and c  b. E.g. In Fig
4.6, f, g are lower bounds of h and i.

Definition 4.3.6: Let a, b be two elements in the poset (A, ). An element
c  A, is said to be a greatest lower bound of a, b if c a and c  b and if
d is a lower bound of a, b, then d  c. E.g. In Fig 4.7, c is a greatest lower
bound of e and g.

Definition 4.3.7: A poset (A, ) is said to be a lattice, if every two
elements in A have a unique least upper bound and a unique greatest lower
bound.

E.g. Fig. 4.6 is not a lattice, because j and k are two least upper bounds of
h and i, whereas Fig. 4.7 is a lattice.

a

b c d
e

f g

h i

j k

a

b

c

d

f
g

e h

82

4.4 SOLVED PROBLEMS:

Problem 4.1: Let (S, R) be a poset. Show that (S, R–1) is also a poset.
(S, R–1) is called as dual poset of (S, R).

Solution:
(i) Since a R a (partial order relation is reflexive), a R–1 a. (R –1 is

reflexive).
(ii) Let a, b  S, where a  b. If a R b, b R–1a.

a R b  b R a (partial order relation is anti-symmetric) 

a R
1

b

 .

Thus, b R–1a  a R–1 b (R –1 is anti-symmetric).

(iii)If a R b  b R –1 a and b R c  c R –1 b; by transitivity of partial
order relation, we have a R c. Hence c R –1 a.
Thus, c R –1b and b R –1a  c R –1a. (R –1 is transitive).
From (i), (ii) and (iii), R–1 is a partial order relation.

Problem 4.2: Find dual of the following posets.
(i) ({0, 1, 2}, R), where R = {(0, 0), (1, 1), (2, 2), (1, 0), (2, 1), (2, 0)}.

R–1 = {(0, 0), (1, 1), (2, 2), (0, 1), (1, 2), (0, 2)}.

(ii) (Z, ) (That is greater than or equal to relation on the set of
integers).
Dual is (Z, ).

(iii)(Z, |). (That is divisibility relation on the set of integers, i.e. a
divides b)
Dual is (Z, is divisible by).

Problem 4.3: Which of the following pairs are comparable in the poset

(Z
+
, |).

(a) 5, 15 (b) 6, 9 (c) 8, 16 (d) 7, 7

Solution: All except for (b).

Problem 4.4: Find two incomparable elements in the posets
(a) (P({0, 1, 2}), ) (where P({0, 1, 2}) is poset of {0, 1, 2})
(b) ({1, 2, 4, 6, 8}, |)

Solution:
(a) (i) {0}and {1} (ii) {0, 1} and {1, 2}
(b) (i) 4, 6 (ii) 6, 8

Problem 4.5: Draw Hasse diagrams for the following relations.

83

(i) ({0, 1, 2, 3, 4, 5}, ) (Note that it forms a chain)

(ii) ({1, 2, 3, 4, 5, 6}, |)

Problem 4.6: Determine whether the poset represented by the following
Hasse diagrams, is a lattice. Justify your answer.

Solution: Given poset is a lattice, as every pair of elements has a unique
least upper bound and unique greatest lower bound.

Now it is the time to check the understanding of the partial order relation.

a b

f

c
g

d

e

0

1

2

3

4

0

1

3
5

2

4

6

84

Exercise:

1. Define following terms with a suitable example in each of the
following case.
(i) Partial ordering relation (Apr. 04)
(ii) Comparable elements
(iii) Total ordering relation
(iv) Hasse Diagram (Apr. 04)

2. Which of these relations on {0, 1, 2, 3} are partial ordering?
Determine the properties of a partial ordering that the others lack.

(i) {(0, 0), (1, 1), (2, 2), (3, 3)}
(ii) {(0, 0), (1, 1), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3)}
(iii) {(0, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 2), (2, 3), (3, 0), (3, 3)}
(iv) {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0),

(2, 2), (3, 3)}
(v) {(0, 0), (0, 1), (1, 2), (0, 2), (1, 1), (1, 2), (2, 3), (1, 3)}

3. Determine whether the following relations, represented by a
relation matrix or a diagraph, are partial ordering relations. Justify
your answer.

(i)





















1011

1100

0110

0101

(ii)
















101

010

001

(iii)

(iv)

a b

c d

a b

85

a b c

d

h

f

j
k

g

l m

e

i

4. Draw the Hasse diagram for each of the following relations.
(i) P = {0, 1, 2, 3, 4, 5} and relation R: greater than or equal to
(ii) P = {1, 2, 3, 4, 5, 6, 7, 8} and relation R: divisibility
(iii) P = {1, 2, 3, 6, 12, 24, 36, 48} and relation R: divisibility
(iv) P = Power set of S, where S = {a, b, c, d} and relation R: 

5. Find matrix of partial order whose Hasse diagram is

6. With reference to partial ordering relation, define following terms
with a suitable example for each of them.
(i) Cover (ii) Upper Bound (iii) Least Upper
Bound (iv) Lower bound (v) Greatest lower bound

7. With reference to the Hasse diagram (Fig. 1.1), answer the
following questions.

(i) Find the maximal elements.
(ii) Find the minimal elements.
(iii) Is there a greatest element?
(iv) Is there a least element?
(v) Find all upper bounds of {a, b, c}.
(vi) Find least upper bound of {a, b, c}, if exists.
(vii) Find all lower bounds of {f, g, h}.
(viii) Find greatest lower bound of {f, g, h}, if exists.

a

c eb d

86

8. Define a Lattice and illustrate with a suitable example.

9. Determine whether the following are lattices. Justify your answer.

(i) P = {1, 3, 6, 9, 12}; relation R: Divisibility
(ii) P: Set of all divisors of 70; relation R: Divisibility
(iii) (Z, )

10. Determine whether the posets represented by the following Hasse
diagrams, are lattices. Justify your answer.

(i)

(ii)

a

b

d

c

e

f

g

87

(iii)

11. Prerequisites in the college for various subjects are one of the
partial ordering relations. We say A << B, if course A is a
prerequisite of course B. Consider the mathematics courses and
their prerequisites given below and draw a Hasse diagram based on
it. Decide whether given relation is Lattice.

Course Prerequisite

Math 101 None

Math 201 Math 101

Math 250 Math 101

Math 251 Math 250
Math 340 Math 201

Math 341 Math 340

Math 450 Math 101, Math 250

Math 500 Math 450, Math 251















88

5

RECURRENCE RELATION

Unit Structure

5.0 Objectives

5.1 Introduction

5.2 Formulation of Recurrence Relation

5.3 Methods of solving recurrence relation

5.4 Unit End Exercises

5.0 OBJECTIVES:

1. Definition and examples of recurrence relation.
2. Formulation of recurrence relation.
3. Solving recurrence relations using backtracking method.
4. Solving homogeneous linear recurrence relation
5. Solving non-homogeneous linear recurrence relation

5.1 INTRODUCTION:

We are familiar with some problem solving techniques for
counting, such as principles for addition, multiplication, permutations,
combinations etc. But there are some problems which cannot be solved or
very tedious to solve, using these techniques. In some such problems, the
problems can be represented in the form of some relation and can be
solved accordingly. We shall discuss some such examples before
proceeding further.

Example5.1: The number of bacteria, double every hour, then what will
be the population of the bacteria after 10 hours? Here we can represent
number of bacteria at the nth hour be an. Then, we can say that an = 2an–1.

Example 5.2: Our usual compound interest problems are examples of

such representation. That is, P
r

PI
n

n 









100
1 , where P is principal, r

is rate of interest, n is period in years and In is interest at the end of nth

year.

89

Example 5.3: Towers of Hanoi is a popular puzzle. There are three pegs
mounted on a board, together with disks of different sizes. Initially, these
discs are placed on the first peg in order of different sizes, with the largest
disc at the bottom and the smallest at the top. The task is to move the discs
from the first peg to the third peg using the middle peg as auxiliary. The
rules of the puzzle are:

 Only one disc can be moved at a time.

 No disc can be placed on the top of a smaller disc.

This is a popular puzzle and we shall discuss its solution, using the one of
the techniques discussed in this chapter.
With these illustrations, we define recurrence relation now.

Definition5.1.1: A recurrence relation for the sequence {an} is an

equation, that expresses an in terms of one or more of the previous terms

of the sequence, namely, a0, a1, ..., an–1, for all integers n with n  n0,
where n0 is a nonnegative integer.

Example5.4: an = 1.06an–1, with a0 = 0.5.

Example 5.5: an = 2an–1 + 5, with a0 = 1.
The term a0, given in the above two examples, specify initial condition to
solve the recurrence relation completely.

5.2 FORMULATION OF RECURRENCE RELATION:

Before we proceed with discussing various methods of solving
recurrence relation, we shall formulate some recurrence relation. The first
example of formulation that we discuss is the problem of Tower of Hanoi
that is Example 5.3 above.

Example 5.6: With reference to Example 5.3, let Hn denote the number of

moves required to solve the puzzle with n discs. Let us define Hn

recursively.

Solution: Clearly, H1 = 1.
Consider top (n–1) discs. We can move these discs to the middle peg using

Hn–1 moves. The nth disc on the first peg can then moved to the third peg.
Finally, (n–1) discs from the middle peg can be moved to the third peg

with first peg as auxiliary in Hn–1 moves. Thus, total number of moves

needed to move n discs are: Hn = 2Hn–1 + 1. Hence the recurrence relation
for the Tower of Hanoi is:

Hn = 1 if n = 1.

Hn = 2Hn–1 + 1 otherwise.

90

Example5.7: Find recurrence relation and initial condition for the number
of bit strings of length n that do not have two consecutive 0s.

Solution: Let an denote the number of bit strings of length n that do not
contain two consecutive 0s. Number of bit strings of length one that
follow the necessary rule are: string 0 and string 1. Thus, a1 = 2. The
number of bit strings of length 2 is: string 01, 10 and 11. Thus, a2 = 3.
Now we shall consider the case n  3. The bit strings of length n that do
not have two consecutive 0s are precisely those strings length n–1 with no

consecutive 0s along with a 1 added 1 at the end of it (which is an–1 in
number) and bit strings of length n–2 with no consecutive 0s with a 10

added at the end of it (which is an–2 in number). Thus, the recurrence
relation is:

an = an–1 + an–2 for n  3 with a1 = 2 and a2 = 3.

5.3 METHODS OF SOLVING RECURRENCE
RELATION:

Now, in this section we shall discuss a few methods of solving
recurrence relation and hence solve the relations that we have formulated
in the previous section.

5.3.1 Backtracking Method:

This is the most intuitive way of solving a recurrence relation. In
this method, we substitute for every term in the sequence in the form of

previous term (i.e. an in the form of an–1, an–1 in the form of an–2 and so
on) till we reach the initial condition and then substitute for the initial
condition. To understand this better, we shall solve the recurrence
relations that we have come across earlier.

Example5.8: Solve the recurrence relation in Example 5.4.

Solution: Given recurrence relation is an = 1.06an–1, with a0 = 0.5. From

this equation, we have an = 1.06an–1 = 1.061.06 an–2 = 1.061.061.06

an–3

Proceeding this way, we have an = (1.06)
n
a0. But, we know that a0 = 0.5.

Thus, explicit solution to the given recurrence relation is an = 0.5(1.06)
n

for n  0.

Example 5.9: Solve the Tower of Hanoi puzzle, using backtracking
method.

Solution: The recurrence relation, for the puzzle is:

Hn = 1 if n = 1.

Hn = 2Hn–1 + 1 otherwise.

91

Thus, Hn = 2Hn–1 + 1 = Hn = 2 Hn–2 + 1) + 1 = 22Hn–2 + 2 + 1 =

22 (2Hn–3 + 1) + 2 + 1

= 23Hn–3 + 22 + 2 + 1. Proceeding this way, we have

Hn = 2
n–1H1 + 2

n–2 + 2
n–3 + 2

n–4 + ... + 1.

= 2
n–1 + 2

n–2 + 2
n–3 + 2

n–4 + ... + 1 (H1 = 1)

= 2
n

– 1.

Example 5.10: Find the recurrence relation to count the number of regions
created by n lines in a plane, such that each pair of lines has exactly one
point of intersection. Solve this recurrence relation.

Solution: Let rn be the number of regions created by n lines following the
condition mentioned in the example. If the number of lines is 1, then
obviously, r1 = 2. If number of lines is 2, then r2 = 4. Now, we shall
assume that there are n–1 lines satisfying the condition mentioned. Then

the number of regions created by these lines is rn–1. If we add one more
line, that interest each of these line exactly once then n more regions are
created as follows:

nth line

n–1 lines

Then, as we observe from above diagram, if nth line intersects all n–1
lines, then new n regions are created. Thus, the recurrence relation is:

rn = rn–1 + n, with r1 = 2.

To solve this equation, we shall use the backtracking method.

rn = rn–1 + n = (rn–1 + n – 1) + n = ... = r1 + 2 + 3 + ...+ n

= 1 + 2 + 3 + ...+ n + 1 =
2

)1(
1




nn

5.3.2 Method for solving linear homogeneous recurrence relations
with constant coefficients:

In the previous subsection, we have seen a backtracking method
for solving recurrence relation. However, not all the equations can be
solved easily using this method (such as Example 5.7). In this subsection,
we shall discuss the method of solving a type of recurrence relation called
linear homogeneous recurrence relation. Before that we shall define this
class of recurrence relation.

92

Definition 5.3.1: A linear homogeneous recurrence relation of degree k
with constant coefficients is a recurrence relation of the form:

knknnn acacaca   2211 , where c1, c2, ..., ck are constant real

numbers with ck  0.

Example 5.11: Example 5.7 is a linear homogeneous recurrence relation
of degree 2.

Example 5.12: Fibonacci sequence is also an example of a linear
homogeneous recurrence relation of degree 2.

Example5.13: The recurrence relation 2
21   nnn aaa is not linear (due to

square term), whereas the relation Hn = 2Hn–1 + 1 is not homogeneous
(due to constant 1).

The basic approach for solving a linear homogeneous recurrence

relation to look for the solution of the form an = r
n
, where r is constant.

Note that, r
n

is a solution to the linear homogeneous recurrence relation of
degree k, if and only if;

kn
k

nnn rcrcrcr   2
2

1
1 . When both the sides of the equation are

divided by r
n–k

and right side is subtracted from the left side, we obtain an
equation, known as characteristic equation of the recurrence relation as
follows:

01
2

2
1

1  


kk
kkk crcrcrcr  .

The solutions of the equation are called as characteristic roots of
the recurrence relation.

In this subsection, we shall focus on solving linear homogeneous

recurrence relation of degree 2 that is: an = c1an–1 + c2an–2.

The characteristic equation of this relation is r2 – c1r – c2 = 0. This is a
quadratic equation and has two roots. Two cases arise.

(i) Roots are distinct, say s1 and s2. Then, it can be shown that
nn

n vsusa 21  is a solution to the recurrence relation, with

211 vsusa  and 2
2

2
12 vsusa  .

(ii) Roots are equal, say s. Then it can be shown that n
n svnua)( is

a solution to the recurrence relation.

We shall use above results to solve some problems.

93

Example 5.14: Solve the recurrence relation bn + 3bn–1 + 2bn–2 = 0, with
b1 = –2 and b2 = 4.

Solution: The characteristic equation to the given recurrence relation is x2

+ 3x + 2 = 0. Roots of this equation are s1 = – 2 and s2 = – 1. Hence the
solution to the relation is:

bn = u(–1)
n

+ v(–2)
n

. b1 = –2 = –u –2v and b2 = 4 = u + 4v. Solving these
two equations simultaneously, we get, u = 0 and v = 1. Thus, explicit

solution to the given recurrence relation is bn = (–2)
n

5.3.3 Method for solving linear non-homogeneous recurrence relations
with constant coefficients:

In the previous subsection, we have seen a way of solving linear
homogeneous recurrence relation. In this subsection, we shall discuss
method of solving linear non-homogeneous recurrence relation with
constant coefficient, i.e. relation of the form:

)(2211 nFacacaca knknnn    , where F(n) is a function of n and

not equal to zero.

The equation, knknnn acacaca   2211 , is called associated

homogeneous recurrence relation.

Example 5.15: Equations an = an–1 + 2
n
, an = an–1 + an–2 + n2 + n + 1, an =

3an–1 + n3
n

and an = an–1 + an–2 + an–3 + n!, are examples of linear non-

homogeneous recurrence relations with constant coefficients and an = an–1,

an = an–1 + an–2, an = 3an–1 and an = an–1 + an–2 + an–3, are associated linear
homogeneous recurrence relations respectively.

The key fact about linear non-homogeneous recurrence relations
with constant coefficient is that every solution is the sum of a particular
solution and a solution associated linear homogeneous recurrence relation.
Thus, to put it shortly

If }{)(p
na is a particular solution of the non-homogeneous linear

recurrence relation with constant coefficients,

)(2211 nFacacaca knknnn    , then every solution of the form

}{)()(h
n

p
n aa  , where }{)(h

na is a solution of associated homogeneous

recurrence relation knknnn acacaca   2211 .

Though, there are no hard and fast rules for finding particular
solution, depending upon the F(n), there are certain guidelines for
choosing a particular solution form and hence finding a particular solution.
These can be understood from the following theorem.

94

Theorem: Suppose {an} satisfies the linear non-homogeneous recurrence
relation

)(2211 nFacacaca knknnn    , where c1, c2, ..., ck are real

numbers and
nt

t
t

t snbnbnbbnF)()(1
110  
 , where b0, b1,, bt and s are real

numbers. When s is not a root of the characteristic equation of the
associated homogeneous recurrence relation, there is a particular solution

of the form: nt
t

t
t snpnpnpp)(1

110  


When s is a root of the characteristic equation and its multiplicity is m,
there is a particular solution of the form:

nt
t

t
t

m snpnpnppn)(1
110  


Example 5.16: Solve the recurrence relation an – 7an–1 + 10an–2 = 3
n
, with

a0 = 0 and a1 = 1.

Solution: Associated homogeneous relation is: an – 7an–1 + 10an–2 = 0.
Characteristic equation for this relation is x2 – 7x + 10 = 0. Roots are: 2, 5

and hence solution to the homogeneous equation is n n
na u2 v5  .

0a = O = u + v and 1a =1 = 2u + 5v On solving these equations

simultaneously, we get,
3

1
and

3

1 
 vu . Thus, solution to the

associated relation is:  nnh
na 52

3

1)( . From the given table, particular

solution is of the form p3
n

and hence we have to determine the value of p.

Hence, we have, n n-1 n- 2 n3 - 7.3 +10.3 = p3

Solving for p, we get
3

4
p Thus, particular solution is

.3.43
3

4 1)( nnp
na Solution to the given recurrence relation is

)(h
na +)(p

na =  nn 52
3

1
 + .3.4 1n

Example 5.17: Find all the solutions of the recurrence relation an = 3an–1

+ 2n. What is its solution when a1 = 1?

Solution: Associated homogeneous equation is an = 3an–1 and its
characteristic equation is x2 – 3x = 0. The roots are 0 and 3 and hence

solution is n n n
na uo u3 v3   . Thus,)(h

na = v3
n
.

Now, we shall find its particular solution. As F(n) is a polynomial of
degree 1, particular solution is of the form pn + q. Hence the recurrence

relation becomes pn + q = 3an–1 + 2n.

95

That is, pn + q = 3[p(n–1) + q] + 2n. Or pn + q = 3pn – 3p + 3q + 2n,
i.e. 2pn + 2q – 3p = –2n. Or 2p = –2, p = –1, 2q – 3p = 0 i.e. 2q = –3 q = –
3/2. Thus, we have,

2

3)( na p
n . Hence, solution to given relation is:

2

3
3.  nv n . To find

solution, if a1 = 1, we substitute n = 1, in its solution. Thus,

a1 = 1 =
2

3
13. 1 v . This gives v =

2

7
.

Hence solution to given recurrence relation is .
2

3
3

2

7









 na n

n

Example 5.18: What form does a particular solution of the linear non-
homogeneous recurrence relation)(96 21 nFaaa nnn   have, when,

nnF 3)( , nnnF 3)( , nnnF 2)(2 and nnnF 3)1()(2  .

Solution: The associated linear homogeneous recurrence relation is,

21 96   nnn aaa .

Its characteristic equation is x2 – 6x + 9 = 0. The roots are 3,3.

Hence solution is an = (u + vn)3
n
. To apply previous theorem, we should

check the function F(n).

For, nnnF 2)(2 , root is 3 and 2 is not a root and hence particular

solution is of the form:

(p0 + p1n + p2n
2)3

n
. In rest of the cases we have to consider the

multiplicity of the root. Thus, for nnF 3)( , particular solution is of the

form: pn23
n
. For nnnF 3)( , particular solution is of the form:

nnppn 3)(10
2  . For nnnF 3)1()(2  , particular solution is of the form:

nnpnppn 3)(2
210

2  .

5.4 UNIT END EXERCISE:

1. Hemant deposits Rs. 10,000 in a saving account at bank. The annual
interest rate of bank is 9% that is compounded. Define a recurrence
relation to compute the amount An his account at the end of nth year
assuming that he does not withdraw money in between.

2. Let T(n) denote the time required to search among n elements. Assume
that n is power of 2. Let T(n) = T(n/2) if n  2 and T(1) = 1. Find
explicit formula for T(n).

96

3. Solve the following recurrence relation (known as ‘handshake’
problem):

Hn = Hn1 + (n  1), n  2, and H1 = 0.

4. Solve the homogeneous recurrence relation tn = 5tn1  6tn2, subject to
the initial conditions t0 = 7 and t1 = 16.

5. Let A = { 0, 1}. Formulate recurrence relation to count number of
strings that do not contain a sequence 111.

6. Solve following non-homogeneous recurrence relations
(i) an – 8an–1 + 15an–2 = 3n with a0 = 0, a1 = 1.
(ii) an = 2an–1 + 3.2n

(iii) an = 2an–1 + n + 5 with a0 = 4.









































97

6

GROUPS AND APPLICATION

[Syllabus Groups and Applications : Monoids, Semigroups, Product and
quotients of algebraic structures, Isomerism, homomorphism,
automorphism, Normal subgroups]

Unit Structure

6.0 Objectives

6.1 Introduction

6.2 Binary Operation

6.3 Semigroup

6.4 Identity Element

6.5 Group

6.6 Subsemigroup

6.7 Products and Quotients of Semigroups

6.8 Homomorphism, Isomorphism and Automorphism of Semigroups

6.9 Homomorphism, lsomorphism and Automornhism of Monoids

6.10 Homomorphism, Isomorphism and Automorphism of Groups

6.11 Coset and Normal Subgroup

6.12 Unit End Exercises

7.0 OBJECTIVES:

To present the concepts of :
 Group, semigroup, products & quotients of semigroups.
 Hornomorphism, Isornorphism & automorphism of semigroups,

monoids & Groups.
 Coset & Normal subgroup.

7.1 INTRODUCTION:

In this chapter, we will study, binary operation as a function, and
two more algebraic structures, semigroups and groups. They are called an
algebraic structure because the operations on the set define a structure on
the elements of that set. We also define the notion of a hornomorphism
and product and quotients of groups and semigroup.

98

6.2 BINARY OPERATION

A binary operation on a set A is an everywhere defined function
:f A A A  Generally operation is defined by If  is binary operation

on A then ,a b A a b A   

Properties of binary operation : - Let  be a binary operation on a set A,
Then  satisfies the following properties for any a, b and c in A

1. a a a  Identity property

2. a b b a   Commutative property

3. () ()a b c a b c     Associative property

6.3 SEMIGROUP

A non-empty set S together with a binary operation  is called as a
semigroup if –

i) binary operation  is closed

ii) binary operation  is associative

we denote the semigroup by (S, )

Commutative Semigroup :- A semigroup (S, ) is said to be
commutative if  is commutative i.e. a b b a   a S 

Examples : 1) (z, +) is a commutative semigroup

2) The set P(S), where S is a set, together with
operation of union is a commutative semigroup.

3) (Z, –) is not a semigroup

The operation subtraction is not associative

6.4 IDENTITY ELEMENT :

An element e of a semigroup (S, ) is called an identity element if
e a a e a    a S 

Monoid A non-empty set M together with a binary operation *defined on
it, is called as a monoid if –

i) binary operation  is closed

ii) binary operation  is associative and

iii) (M, ) has an identity.

i.e. A monoid is a semi group that has an identity

99

6.5 GROUP

A a non-empty set G together with a binary operation  defined on it is
called a group if

(i) binary operation  is close,

(ii) binary operation  is associative,

(iii) (G, ) has an identity,

(iv) every element in G has inverse in G,

We denote the group by (G, )

Commutative (Abelian Group : A group (G, ) is said to be
commutative if  is commutative. i.e. a * b b * a a,b G        .

Cyclic Group : If every element of a group can be expressed as some
powers of an element of the group, then that group is called as cyclic
group.

The element is called as generator of the group.

If G is a group and a is its generator then we write G a 

For example consider {1, 1, , }G i i   . G is a group under the binary

operation of multiplication. Note that G i  . Because

   2 3 4a i, i , i , i i, 1, i,1        

6.6 SUBSEMIGROUP :

Let (S, ) be a semigroup and let T be a subset of S. If T is closed under
operation  , then (T, ) is called a subsemigroup of (S, ).

Submonoid : Let (S, ) be a monoid with identity e, and let T be a non-
empty subset of S. If T is closed under the operation  and e  T, then (T,
) is called a submonoid of (S, ).

Subgroup : Let (G, ) be a group. A subset H of G is called as subgroup
of G if (H, ) itself is a group.

Necessary and Sufficient Condition for subgroup : Let (G; ) be a

group. A subset H of G is a subgroup of G if and only if 1a b H 
,a b H 

100

6.7 PERMUTATION

Definition : A permutation on n symbols is a bijective function of the set

 A = 1,2,...n onto itself. The set of all permutations on n symbols is

denoted by Sn. If  is a permutation on n symbols, then  is completely

determined by its values      1 , 2 n   . We use following notation

to denote
       
1 2 3 n

1 1 3 n

    
      

.

For example
1 2 3 4 5

5 3 1 2 4

    
 

    
denotes the permutation on the 5 symbols

(1,2,3,4,5).  maps 1 to 5, 2 to 3, 3 to 1, 4 to 2 and 5 to 4.

Product of permutation : - Let A = {1,2,3,4}

Let
1 2 3 4

3 2 4 1

   
 

   
and

1 2 3 4

4 3 2

   
 

   
.

Then O 
1 2 3 4

3 2 4 1

   
 
   

1 2 3 4

4 3 2

   
 
   

=
1 2 3 4

2 3 1 4

   
 
   

Cycle - an element ns is called a cycle of lingth r if  r symbols

     1 2 n 1 2 2 3 n 1i , ii i i , i i ... i i        .

Example : Consider following permutation

i)
1 2 3 4 5 6

2 3 4 1 6 5

     
 

     
. It can be expressed as a product of cycles -

   
1 2 3 4 5 6

1 2 3 4 5 6
2 3 4 1 6 5

      
          

      

Transposition :

A cycle of length two is called transposition.

For example following permutation can be expressed as a product
of transpositions.

     

         

18 3 7 2 5 4 6

1 8 1 3 1 7 2 5 4 6

       

         

101

Even (odd) Permutation -

Let A {1, 2, ….n). A permutation ns is even or odd according

to whether it can be expressed as the product of an even number of
transpositions or the product of an odd number of transpositions
respectively.

For example we can consider following permutation :

   

     

1 4 5 2 3

1 4 1 5 2 3

    

     

= odd no. of transpositions so  is odd permutation

Example 1 : Show that  defined as x y x  is a binary operation on the

set of positive integers. Show that  is not commutative but is associative.

Solution : Consider two positive integers x and y. By definition x y x 

which is a positive integer. Hence  is a binary operation.

For commutativity : x y x  and y x x  . Hence x y y x   in general

  is not commutative.

But ()x y z x y x     and ()x y z x z x     . Hence

() ()x y z x y z     .   is associative

Example 2 : Let I be the set of integers and Zm be the set of equivalence
classes generated by the equivalence relation “congruent modulo m” for
any positive integer m.

a) Write the sets Z3 and Z6

b) Show that the algebraic systems (Zm, + m) and (Zm,  m) are
monoids.

c) Find the inverses of elements in Z3 and Z4 with respect to +3 and 4

respectively.

Solution : a) Z3 for (Z3,+ 3) ={[0], [1], [2]}

Z6 for (Z6, + 6) = {[0], [1], [2], [3], [4], [5] }

Z3 for (Z3, 3) ={[0], [1], [2]}

Z6 for (Z6, 6) = {[0], [1], [2], [3], [4], [5] }

Example 3 : Determine whether the following set together with the binary
operation is a semigroup, a monoid or neither. If it is a monoid, specify the
identity. If it is a semigroup or a monoid determine whether it is
commutative.

102

i) A = set of all positive integers. max{ , }a b a b  i.e. bigger of a and

b [May-06]

ii) Set S = {1, 2, 3, 6, 12} where . . .(,)a b G C D a b 

[Dec-03, May – 07]

iii) Set S ={1,2,3,6,9,18) where  . . . ,   a b L C M a b [Nov-06]

iv) Z, the set of integers, where a b a b ab    [April - 04]

v) The set of even integers E, where
2

ab
a b  [May-03]

vi) Set of real numbers with 2a b a b   

vii) The set of all mn matrices under the operation of addition.

Solution :

i) A = set of all positive integers. max{ , }a b a b  i.e. bigger of a and b.

Closure Property: Since Max {a, b} is either a or b  a b A  . Hence
closure property is verified.

Associative Property :

Since () max{{ , }, } max { , , }a b c a b c a b c   

= Max{a,{b, c} } = (a.b).c

  is associative.

 (A, ) is a semigroup.

Existence of identity : 1  A is the identity because

1.a = Max{ 1,a}= a  aA

 (A, ) is a monoid.

Commutative property : Since Max{a, b) = max{b, a) we have
a b b a   Hence  is commutative.

Therefore A is commutative monoid.

ii) Set S = { 1,2,3,6,12} where . . . (,)a b G C D a b 

* 1 2 3 6 12

1 1 1 1 1 1

2 1 2 1 2 2

3 1 1 3 3 3

6 1 2 3 6 6

12 1 2 3 6 12

Closure Property : Since all the elements of the table  S, closure
property is satisfied.

103

Associative Property :Since

() () { , } { , , }a b c a b c a GCD b c GCD a b c       

And () { , } { , , }a b c GCD a b c GCD a b c    

 () ()a b c a b c    

  is associative.

 (S, ) is a semigroup.

Existence of identity: From the table we observe that 12  S is the
identity

 (S, ) is a monoid.

Commutative property : Since GCD{a,b}= GCD{b,a) we have
a b b a   . Hence  is commutative.

Therefore A is commutative monoid

(iii) Set S ={ 1,2,3,6,9, 18} where a b =L.C.M. (a,b)

* 1 2 3 6 9 18

1 1 2 3 6 9 18

2 2 2 6 6 18 18

3 3 6 3 6 9 18

6 6 6 6 6 18 18

9 9 18 9 18 9 18

18 18 18 18 18 18 18

Closure Property : Since all the elements of the table  S, closure
property is satisfied.

Associative Property : Since () { , } { , , }a b c a LCM b c LCM a b c    

And () { , } { , , }a b c LCM a b c LCM a b c    

 () ()a b c a b c    

  is associative.

 (S,) is a semigroup.

Existence of identity : From the table we observe that 1  S is the
identity.

 (S,) is a monoid.

Commutative property : Since LCM{a, b} = LCM{b, a} we have
a b b a   . Hence  is commutative.

104

Therefore A is commutative monoid.

(iv) Z, the set of integers where - a * b = a + b - ab

Closure Property : - a,b z  then a b ab z a,b    so * is closure.

Associate Property : Consider a,b z 

   

 

a * b * c a b ab * c

a b ab c a b ab c

a b ab c ac bc abc

        

       

      

a b c ab ac bc abc       (1)

   

 

a * b * c a * b c bc

a b c bc a b c bc

      

      

a b c bc ab ac abc       (2)

From 1 & 2

   a * b * c a * b * c a,b,c z       

* is associative

(z, &) is a semigroup.

Existence of Identity : Let e be the identity element a * e = q

a + e - q.e = a

a + e - a.e = a

e (1-a) = 0

e = 0 or a = 1

But a 1

E = 0

O Z is the identity element.

(Z, *) is monoid.

Commutative property : a,b z  

a * b = a + b - ab

= b + a - ba

= b * a

* is commutative

(Z, *) is commutative monoid.

OZ is the identity

v) E = set of even integers.
2

ab
a b 

105

Closure Property : Since
2

ab
is even for a and b even.   a b E . Hence

closure property is verified.

Associative Property : Since () ()
2 4 2

 
          

 

bc abc ab
a b c q c a b c

  is associative. (E,) is a semigroup.

Existence of identity : 2 E is the identity because
2

2
2

a
a  = a  a  E

(E, ) is a monoid.

Commutative property : Since
2 2

ab ba
 , we have a b b a   Hence  is

commutative.

(E,*) is commutative monoid.

(vi) -2A is identity

(vii)
0 0

0 0

 
 
 

 M is the identity

Example 4 : State and prove right or left cancellation property for a
group.

Solution : Let (G,) be a group.

(i) To prove the right cancellation law i.e.     a b c b a c

Let a, b, cG. Since G is a group, every element has inverse in G.

 b–1  G

Consider a b c b  

Multiply both sides by b–1 from the right.

:. 1 1() ()a b b c b b     

 1 1() ()     a b b c b b Associative property

   e a e c 1  b b e G

 a = c eG is the identity

(ii) To prove the left cancellation law i.e.     a b c b a c

Let a, b, cG: Since G is a group, every element has inverse in G.

a–1 G

Consider a b a c  

106

Multiply both sides by a–1 from the left

 1 1() ()a a b a a c     

 1 1() ()a a b a a c      Associative property

 e b e c   1a a e G   

 b = c eG is the identity

Example 5 : Prove the following results for a group G.

(i) The identity element is unique.

(ii) Each a in G has unique inverse a–1

(iii) (ab) –1 = b–1a–1

Solution : (i) Let G be a group. Let e1 and e2 be two identity elements
of G.

If e1 is identity element then e1e2 = e2e1 = e2 ……………(1)

If e2 is identity element then e1e2 = e2e1 = e1 ……………(2)

 From (1) and (2) we get e1 = e2 i.e. identity element is unique.

(ii) Let G be a group. Let b and c be two inverses of aG.

lf b is an inverse of a then ab = ba = e……………(1)

If c is an inverse of a then ac = ca = e……………(2)

Where e  G be the identity element.

 From (1) and (2) we get ab = ac and ba = ca.

 b=c by cancellation law : i.e. inverse of aG is unique.

 inverse of a G is unique.

(iii) Let G be a group. Let a, b  G.

Consider (ab)(b–1a–1)

= a(bb–1)a–1 Associative property

= (ae)a–1 bb–1 = e, eG is identity

= (ae)a–1 Associative property

= aa–1 ae = a

= e aa–1 = e

Similarly we can prove (b–1a–1)(ab) = e.

Hence (ab) –1 = b–1 a–1

Example 6 : Let G be a group with identity e. Show that if 2a e for all a
in G, then every element is its own inverse [Nov.-05]

107

Solution : Let G be a group.

Given a2 = e for all aG.

Multiply by a–1 we get

a–1a2 = a–1 e

 a = a–1

i.e. every element is its own inverse

Example 7 : Show that if every element in a group is its own inverse, then
the group must be abelian. [Dec-02] [5]

OR

Let G be a group with identity e. Show that if a2 = e for all a in G, then G
is abelian. [May-05]

Solution : Let G be a group.

 For aG, a–1G

 Consider (ab) –1

 (ab) –1=b–1a–1 reversal law of inverse.

 ab=ba every element is its own inverse

 G is abelian.

Example 8 : Let Zn denote the set of integers (0, 1, .. , n-1). Let  be

binary operation on Zn such that ab = the remainder of ab divided by n.

i) Construct the table for the operation  for n=4.

ii) Show that (Zn, ) is a semi-group for any n.

iii) Is (Zn, ) a group for any n? Justify your answer.

Solution : (i) Table for the operation  for n = 4.

0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1



(ii) To show that (Zn, ) is a semi-group for any n.

Closure property : Since all the element in the table

{0, 1, …, n-1}, closure property is satisfied.

108

Assiciative property : Since multiplication modulo n is associative,
associative property is satisfied.

 (Zn, ) is a semi-group

(iii) (Zn, ) is not a group for any n.

If n = 4, 2–1 does not exist (1G is the identity.)

Example 9 : Show that a group (G, ) is abelian if and only if for a, bG,
2 2 2()a b a b   [Nov-06]

Solution : Step-1 : Given (G, ) is a group and for a, bG,
2 2 2()a b a b   . To prove that (G, ) is abelian.

Given 2 2 2()a b a b  

 () () () ()a b a b a a b b      

 () ()a b a b a a b b       Associative property

 () ()b a b a b b     Left cancellation law

   b a a b Right cancellation law

 (G, ) is abelian.

Step-2 : Assume that (G, ) is abelian.

To prove that a, bG, 2 2 2()a b a b  

Consider 2()a b

= () ()a b a b  

= ()a b a b   Associative property

= ()a a b b   G is abelian

= () ()a a b b   Associative property

= a2 * b2

Example 10 : If (G, ) be an abelian group, then for all a, bG, show that

()n n na b a b   .

Solution : Given (G, ) is abelian. To prove that for all a, bG,

()n n na b a b  

We will use the method of induction. Let P(n) be the property that for all
a, bG;

()n n na b a b  

109

Step-l :Check that P(1) is true.

1 1 1()a b a b  

a b a b   Hence P(1) is true.

Step-2 :Assume P(k) is true for some kN

()k k ka b a b  

Step-3: Prove P(k+1) is true.

Consider 1()ka b  

= () () () ()k k ka b a b a b a b       using step-2

= ()k ka b a b   Associative property

= ()k ka a b b   G is abelian

= () ()k ka a b b   Associative property

= 1 1 k ka b  P(k+1) is true.

Hence P(n) is true for every nN

Example 11 : Let =(1 2 3 4)(6 5 7) and =(2 4 3)(7 5) be permutations
of the set {1,2,3,…..,7}. Express  as product of transposition. Find
whether    is an even permutation or not. [Dec-99][5]

Solution : Let a=(1 2 3 4)(6 5 7)

  = (1 4)(1 3)(1 2)(6 7)(6 5)

   =
1 2 3 4 5 6 7 1 2 3 4 5 6 7

o
2 3 4 1 7 5 6 1 4 2 3 7 6 5

   
   
   

   =
1 2 3 4 5 6 7

= (1 2)(5 6)
2 3 4 1 7 5 6

 
 
 

   is an even permutation.

Example 12 : Let A = { 1, 2, 3, 4, 5, 6} and P =
1 2 3 4 5 6

2 4 3 1 5 6

 
 
 

be

permutation on A

a) Write P as a product of disjoint cycles.

b) Find P–1.

c) Find the smallest positive integer k such that Pk=1A.

[May-02][4]

110

Solution: Let P =
1 2 3 4 5 6

2 4 3 1 5 6

 
 
 

(a) P = (1 2 4)(3)(5)(6)

(b) PP–1 = 1

1 2 3 4 5 6 1 2 3 4 5 6
=

2 4 3 1 5 6 1 2 3 4 5 6

   
   
   

 P–1 =
1 2 3 4 5 6

4 1 3 2 5 6

 
 
 

(c) P2 =

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
=

2 4 3 1 5 6 2 4 3 1 5 6 4 1 3 2 5 6

    
    
    

P3 = p2p =

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
=

4 1 3 2 5 6 2 4 3 1 5 6 1 2 3 4 5 6

    
    
    

 Smallest k=3

Example 13 : Consider the group G = {1,2,3,4,5,6} under multiplication
modulo 7. [Apr-04, May-06]

(i) Find the multiplication table of G

(ii) Find 2–1, 3–1, 6–1.

(iii) Find the order of the subgroups generated by 2 and 3.

(iv) Is G cyclic?

Solution : (i) Multiplication table of G

Binary operation  is multiplication modulo 7.

* 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

From the table we observe that 1G is identity.

(ii) To find 2–1, 3–1, 6–1.

From the table we get 2–1 = 4, 3–1 = 5, 6–1 = 6

111

iii) To find the order of the subgroups generated by 2.

Consider 2° = 1 = Identity, 21 = 2; 22 = 4, 23 = 1 = Identity

< 2 > = {21, 22, 23}

 Order of the subgroup generated by 2 =3

To find the order of the subgroups generated by 3.

Consider 3° = 1 = identity, 31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 =
1 = Identity

< 3 > = {31, 32, 33,34, 35, 36}

 Order of the subgroup generated by 3 = 6

(iv) G is cyclic because G = < 3 >.

Example 14 : Let S={x|x is a real number and x0, x1}. Consider the
following functions fi : SS, i=1,2,---,6 [Nov-05]

1 2 3 4 5
1 1 1

() , () 1 , () , () , () 1 ,
1

      


f x x f x x f x f x f x
x x x

6
()

1

x
f x

x




Show that G = {f1, f2, f3, f4, f5, f6) is a group under the operation of
composition. Give the multiplication table of G.

Solution : (i) Multiplication table of G

1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 1 5 6 3 4

3 3 4 1 2 6 5

4 4 3 6 5 1 2

5 5 6 2 1 4 3

6 6 5 4 3 2 1

f f f f f f

f f f f f f f

f f f f f f f

f f f f f f f

f f f f f f f

f f f f f f f

f f f f f f f

(i) Closure property : Since all the elements in the table G, closure
property is satisfied.

(ii) Associative property : Since composition of functions is
associative, associative property is satisfied.

(iii) Existence of identity : From the table we observe that f1G is the
identity.

(iv) Existence of inverse : From the table we observe that

f1
–1 = f1, f2

–1 = f2, f3
–1 = f3, f4

–1 = f5, f5
–1 = f4, f6

–1 = f6

i.e. every element of G has inverse in G. Hence G is a group.

112

Example 15 : Let G be an abelian group with identity e and let H = {x/x2

= e). Show that H is a subgroup of G. [May-02, 03, May-07]

Solution : Let x, yHx2 = e and y2 = e  x–1 = x and y–1 = y

Since G is abelian we have xy = yx  xy–1 = yx

Now (xy–1)2 = (xy–1)(xy–1) = (xy–1)(y–1x)

= (xy–1)(yx) = x(y–1y)x

= x(e)x

= x2 = e

 xy–1  H

 H is a subgroup.

Example 16 : Let G be a group and let H = (x/xG and xy = yx for all
yG}. Prove that H is a subgroup of G. [98][7]

Solution : Let x, z  H  xy = yx for every yG  x = yxy–1.

Similarly zy = yz for every yG z = yzy–1.

Now consider xz–1 = (yxy–1)(yzy–1) –1

= 1 1 1 1 1yxy yz y yxz y     

 (x.z–1)y = y(xz–1)  H.

 xz–1 H

 H is a subgroup

Example 17 : Find all subgroups of (Z,) where  is the operation
addition modulo 5. Justify your answer.

Solution:

0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3



Example 18 : Let G be a group of integers under the operation of
addition. Which of the following subsets of G are subgroups of G?

(a) the set of all even integers,

(b) the set of all odd integers. Justify your answer.

113

Solution:

a) Let H= set of all even integers.

We know, additive inverse of an even number is even and sum of
two even integers is also even. Thus for a,bH we have ab–1H.

Hence H is a subgroup of G.

b) Let K = set of all odd integers.

We know, additive inverse of an odd number is odd and sum of
two odd integers is even.

Thus for a,bK we have ab–1K.

Hence K is not a subgroup of G.

Example 19 : Let (G, ) be a group and H be a non-empty subset of G.
Show that (H, ) is a subgroup if for any a and b in H, ab–1 is also in H.

[May-00) [3]

Solution :

(i) Let a, a  H  a a–1 H. i.e. e  H

 The identity element  H.

(ii) Let e, a  H  ea–1 H. i.e. a–1 H

 Every element has inverse  H.

(iii) Let a, b  H.  b–1 H.  a(b–1) –1 H. i.e. ab H.

Closure property is satisfied.

(iv) Every element in H is also in G. And G is a group. So associative
property is satisfied by the elements of H. Hence associative
property is satisfied by the elements of H.

Hence H is a group. But H is a subset of G. H is a subgroup
of G.

Example 20 : Let H and K be subgroups of a group G. Prove that HK is
a subgroup of G. [Dec-02] [5]

Solution : If H is a subgroups of a group G, then for any a, b  H,
ab–1 H.

Similarly, if K is a subgroups of a group G, then for any a, b  K,
ab–1 K.

Now if a, b  HK, a, b  H and a, b  K.  ab–1  H and ab–1  K.
Hence ab–1 HK.

 HK is a subgroup of G.

114

6.8 PRODUCTS AND QUOTIENTS OF SEMIGROUPS:

In this section we obtain new semigroups from existing
semigroups.

Theorem 6.1 :

If (S, ) and (T, ’) are semigroups, then (S  T, ”) is a semigroup,

where ” is defined by (s1,t1) ”(s2,t2) =  1 2 1 2s * s , t * ' t

Theorem 6.2 :

If S and T are monoids with identities es and eT, respectively, then, S  T
is a monoid with identity (es, eT)

Theorem 6.3 :

Let R be congruence relation on the semigroup (S, ). Consider the
relation from S/RS/R to S/R in which the ordered pair ([a], [b]) is, for a
and b in S, related to [a  b].

(a)  is a function from S/RS/R to S/R, and as usual we denote 
([a],[b]) by [a]  [b]. Thus [a]  [b]=[ab].

(b) (S/R, ) is a semigroup.

Proof : Suppose that ([a],[b]) = ([a’],[b’]). Then aRa’ and bRb’, so we
must have abRa’b’, since R is a congruence relation. Thus
[ab]=[a’b’]; that is,  is a function. This means that  is a binary
operation on S/R.

Next, we must verify that  is an associative operation. We have

[a]([b][c])=[a][b*c]=[a*(b*c)]=[(ab)c] by associative property of
 in S

= [ab]  [c]

= ([a]  [b])  [c],

Hence S/R is a semigroup. We call S/R the quotient semigroup or factor
semigroup. Observe that  is a type of “quotient binary relation” on S/R
that is constructed from the original binary relation  on S by the
congruence relation R

Example 21 : Let Z be the set of integers, and Zm, be the set of
eduivalences classes generated by the equivalence relation “congruence
modulo m” for any positive integer m.

115

Zm, is a group with operation  where [a]  [b] = [a+b]

For Z2 and Z3 defined according to the above definition, write the
multiplication table for the group Z2Z3. [May-03] [5]

Solution : The multiplication table for the group Z2Z3.

(0,0) (0,1) (0, 2) (1,0) (1,1,) (1, 2)

(0,0) (0,0) (0,1) (0, 2) (1,0) (1,1) (1, 2)

(0,1) (0,1) (0, 2) (0,0) (1,1) (1, 2) (1,0)

(0, 2) (0, 2) (0,0) (0,1) (1, 2) (1,0) (1,1)

(1,0) (1,0) (1,1) (1, 2) (0,0) (0,1) (0, 2)

(1,1) (1,1) (1, 2) (1,0) (0,1) (0,



2) (0,0)

(1, 2) (1, 2) (1,0) (1,1) (0, 2) (0,0) (0,1)

6.9 HOMOMORPHISM, ISOMORPHISM AND
AUTOMORPHISM OF SEMIGROUPS

Homomorphism : Let (S, ) and (T, ’) be two semigroups. An
everywhere defined function

f : ST is called a homomorphism from (S, ) to (T,  ’) if

f(ab) = f(a) ’f(b)  a, b  S

Isomorphism : Let (S, ) and (T, ’) be two semigoups. A function

f : S  T is called a isomorphism from (S, ) to (T, ’) if

(i) it is one-to-one correspondence from S to T (ii) f(ab) = f (a)
’f (b)  a, b  S

(S, ) and (T, ’) are isomorphic’ is denoted by S T .

Automorphism : An isomorphism from a semigroup to itself is called an
automorphism of the semigoup. An isonorptism f : s s   is called
automorphism.

6.10 HOMOMORPHISM, LSOMORPHISM AND
AUTOMORNHISM OF MONOIDS :

Homomorphism : Let (M, ) and (M’, ’) be two monoids. An
everywhere defined function f : M  M’ is called a homomorphism from
(M, ) to (M’, ’) if

f (a  b) = f(a) ’f(b)  a, b  M

Isomorphism : Let (M, ) and (M’, ’) be two monoids. A function

f : M  M’ is called a isomorphism from (M, ) to (M’, ’) if

116

(i) it is one-to-one correspondence from M to M’ (ii) f is onto.

(iii) f(ab = f (a) ’f (b)  a, bM

‘(M ) and (M’,  ’) are isomorphic is denoted by M  M’.

Automorphism : An isomorphism from a monoid to itself is called an
automorphism of the monoid. An isomorphism f :M M   is called
Automorphism of monoid.

6.11 HOMOMORPHISM, ISOMORPHISM AND
AUTOMORPHISM OF GROUPS :

Homomorphism : Let (G, ) and (G’, ’) be two groups. An everywhere
defined function f : G  G’ is called a homomorphism from (G, ) to (G’,
’) if

f (ab) = f (a) ’f (b)  a, b  G

Isomorphism : Let (G, ) and (G’, ’) be two groups. A function

f : GG’ is called a isomorphism from (G, ) to (G’, ’) if

(i) it is one-to-one correspondence from G to G’ (ii) f is onto.

(iii) f(a  b) = f (a) ’f (b)  a, bG

‘(G, ) and (G’, ’) are isomorphic’ is denoted by G  G’.

Automorahism: An isomorphism from a group to itself is called an
automorphism of the group. An isomorphism f :G G   is called
Automorphism.

Theorem 6.4 : Let (S, ) and (T, ’) be monoids with identity e and e’,
respectively. Let f : S  T be an isomorphism. Then f(e) = e’.

Proof : Let b be any element of T. Since f is on to, there is an element a in
S such that f(a) = b

Then a a e 

() () () () ' ()      b f a f a e f a f e b f e (f is isomorphism)

Similarly, since a e a  ,

 () () (*) () '     b f a f e a f e a f e a

Thus for any ,bT,

' () () 'b b f e f e b   

which means that f(e) is an identity for T.

Thus since the identity is unique, it follows that f(e)=e’

117

Theorem 6.5: Let (S, ) and (T, ’) be monoids with identity e and e’,
respectively. Let f : S  T be a homomorphism. Then f(e) = e’.

Proof : It can be prove similarly like Theorem 6.4.

Theorem 6.6 : Let f be a homomorphism from a semigroup (S, ) to a
semigroup (T, ’). If S’ is a subsemigroup of (S, ), then

F(S’) = {t  T | t = f (s) for some s  S},

The image of S’ under f, is subsemigroup of (T, ’).

Proof : If t1, and t2 are any elements of F(S’), then there exist s1 and s2 in
S’ with

t l= f(s1) and t2 = f(s2).

Therefore,

1 2 1 2 1 2 2 1 2 1 2 1
() () () () () ()t t f s f s f s s f s s f s f s t t          

Hence (T,  ') is also commutative.

Example 22 : Let G be a group. Show that the function f : G  G defined
by f(a) = a2 is a homomorphism iff G is abelian. [98][6], [May-00] [4]

Solution :

Step-1 : Assume G is abelian. Prove that f : G  G defined by f(a) = a2 is
a homomorphism.

Let a,bG.  f(a) = a2 , f(b) = b2 and f(ab) = (ab)2 by definition of f.

 f(ab)=(ab)2

= (ab)(ab).

= a(ba)b associativity

= a(ab)b G is abelian

= (aa)(bb) associativity

= a2b2

= f(a)f(b) definition of f

 f is a homomorphism.

Step 2 :
2

2

y a G a G s t

f(a) y a

      

 

f is onto.

Step-3 : Assume, f : G  G defined by f(a) = a2 s a homomorphism.
Prove that G is abelian.

Let a,bG.  f(a) = a
2

, f(b) = b2 and f(ab) = (ab)2 by definition of f.

118

 f(ab) = f(a)f(b) f is homomorphism

 (ab)
2

= a2 b2 definition of f

 (ab)(ab) = (aa)(bb)

 a(ba)b = a(ab)b associativity

 ba = ab left and right cancellation taws

 G is abelian.

Example 23 : Let G be a group and let a be a fixed element of G. Show

that the function :
a

f G G defined by 1()
a

f x axa for xG is an

isomorphism. [Dec-O2][5]

Solution :

Step-1: Show that f is 1-1.

1()
a

f x axa

Consider fa(x) = fa(y) for x, y G

 axa–1 = aya–1 definition of f

 x = y left and right cancellation laws

 f is 1- 1

Step 2 :
1

1
a

y axa G x G s.t.

f (x) a xa





     

 

f is onto.

Step-3 : Show that f is homomorphism.

For x, yG
1()f x a x a   , 1()f y a y a   and 1() ()f x y a x y a    

Consider 1() ()f x y a x y a     for x, yG

 1() ()f x y a x e y a      eG is identity

= 1 1 1()a x a a y a a a e        

= 1 1() ()a x a a y a      associativity

 () () ()f x y f x f y   

 f is homomorphism.

Since f is 1-1 and homomorphism, it is isomorphism.

Example 24 : Let G be a group. Show that the function f : G  G defined
by f(a) = a–1 is an isomorphism if and only if G is abelian. [May-03][4]

119

Solution :

Step-1: Assume G is abelian. Prove that f : G  G defined by f(a) = a–1 is
an isomorphism.

i) Let f(a)=f(b)

a–1 = b–1 a = b f is 1- l.

ii) 1a G a G   

 

1

1

x G

f x x

 

 

f is onto.

iii) Let a,bG. f(a) = a–1, f(b) = b–1 and f(ab) = (ab) –1 by
definition of f.

 f(ab) = (ab) –1

= b–1a–1 reversal law of inverse

= a–1b–1 G is abelian

= f(a)f(b) definition of f.

 f is a homomorphism.

Since f is 1-1 and homomorphism, it is isomorphism.

Step – 2 : Assume f : G  G defined by f(a) = a–1 is an isomorphism.
Prove that G is abelian.

Let a, bG f(a) = a–1, f(b) = b–1 and f(ab) = (ab) –1 by definition of f

 f(ab) = f(a)f(b) f is homomorphism

 (ab)–1 = a–1b–1 definition of f

 b–1a–1 = a–1 b–1 reversal law of inverse

G is abelian.

Example 25 : Define (Z, +)  (5Z, +) as f(x) = 5x, where 5Z=(5n : n 
Z). Verify that f is an isomorphism. [Dec-99j [S]

Solution:

Step -1 Show that f is 1-l.

Consider f(x) = f(y) for x, yG

 5x = 5y definition of f

 x = y  f is 1-1

Step 2 :
5x G, x G

s.t. f(x) 5x

   

 

f is onto.

Step-3: Show that f is homomorphism.

120

For x y G 

f(x) = 5x, d(y) = 5y and f(x+y) – 5(x+y)

Consider f(x+y) = 5(x+y) for x, y G

= 5x + 5y

 f(x+y) = f(x) + f(y)

 f is homomorphism.

Since f is 1-1 and homomorphism, it is isomorphism.

Example 26 : Let G be a group of real numbers under addition, and let G’
be the group of positive numbers under multiplication. Let f : G  G’ be
defined by f(x) = ex. Show that f is an isomorphism from G to G’

[May-06]

OR

Show that the group G = (R,+) is isomorphic to G’ = (R+, x) where R is
the set of real numbers and R+ is a set of positive real numbers.

Solution :

Step 1:Show that f is 1-1.

Consider f(x) = f(y) for x,yG

 ex = ey definition of f

 x = y  f is 1-1.

Step 2 : If 1x G , then log x G and   log xf .logx e x  so f is onto.

Step-3 : Show that f is homomnrphism.

For x, yG

f(x) = ex, f(y) = ey and f(x+y) = e(x+y)

Consider f(x + y) = e(x + y) for x, y G

= exey

 f(x + y) = f(x)  f(y) f is homomorphism.

Since f is 1-1 and homomorphasm, it is isomorphism.

Example 27 : Let G = {e, a, a2, a3, a4, a5} be a group under the operation

of i i ra a a , where i + j  r(mod 6). Prove that G and Z6 are isomorphic

[May-07]

Solution :

121

Step - I : Show that f is l-I.

Let x = ai, and y = aj .

Consider f(x) = f(y) for x, y  G

 f(ai) = f(aj) definition of f

 ai = aj

 x = y f is 1-1.

Step-2 : Show that f is homomorphism.

Let x = a’ and y = a’ x, y  G

f(ai) = i , f(aj) j and f(x + y) = f(ai aj)

Consider f(x+y) = f(aiaj) = f(a’) where i + j = r(mod 6)

= r

= i + j

= f(ai) + f(aj)

 f(x  y) = f(x) + f(y)  f is homomorphism.

Since f is 1-1 and homomorphism, it is isomorphism.

Example 28 : Let T be set of even integers. Show that the semigroups (Z,
+) and (T, +) are isomorphic. [May-05]

Solution : We show that f is one to one onto .

Define f : (Z, +)  (T, +) as f(x) = 2x

1) Show that f is l-1

Consider f(x) = f(y)

2x = 2y

x = y f is 1-l.

2) Show that f is onto

y = 2x x = y/2 when y is even.

for every yT there exists xZ.

f is onto.

f is isomorphic.

3) F is homorphism

F (x + y) = 2 (x + y)

= 2x + 2y

= f(x) + f(y)

f is honomorphism.

122

Example 29 : For the set A = {a,b,c} give all the permutations of A. Show
that the set of all permutations of A is a group under the composition
operation.

Solution : A={a,b,c}. S3= Set of all permutations of A.

0

a b c
f

a b c

 
  
 

,
1

a b c
f

a c b

 
  
 

,
2

a b c
f

c b a

 
  
 

3

a b c
f

b a c

 
  
 

,
4

a b c
f

b c a

 
  
 

,
5

a b c
f

c a b`

 
  
 

Let us prepare the composition table.

0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 0 4 5 2 3

2 2 3 0 4 3 1

3 3 4 5 0 1 2

4 4 3 1 2 5 0

5 5 2 3 1 0 4

0 f f f f f f

f f f f f f f

f f f f f f f

f f f f f f f

f f f f f f f

f f f f f f f

f f f f f f f

i) Closure Property: Since all the elements in the composition table
S3, closure property is satisfied.

ii) Associative Property: Since composition of permutations is
associative, associative property is satisfied.

iii) Existance of Identity: From the table we find that fo is the
identity

iv) Existance of Inverse: From the composition table it is clear that

f0
–1 = f0, f1

–1 = f1, f2
–1 = f2, f3

–1 = f3, f4
–1 = f5, f5

–1 = f4

 Every element has inverse in S3. Hence S3 is a group.

6.12 COSET AND NORMAL SUBEROUP:

Left Coset : Let (H, ) be a subgroup of (G, ). For any a  G, the set of
aH defined by { / }  aH a h h H is called the left coset of H in G

determined by the element aG. The element a is called the representative
element of the left coset aH.

Right Coset : Let (H, ) be a subgroup of (G, ). For any a  G, the set
of Ha defined by

 Ha h * a | h H  

123

is called the right coset of H in G determined by the element aG. The
element a is called the representative element of the right coset Ha.

Theorem 6.7: Let (H, ) be a subgroup of (G, ). The set of left cosets of
H in G form a partition of G. Every element of G belongs to one and only
one left coset of H in G.

Theorem 6.8 : The order of a subgroup of a finite group divides the order
of the group.

Corollary : If (G, ) is a finite group of order n, then for any aG, we
must have an=e, where e is the identity of the group.

Normal Subgroup : A subgroup (H, ) of (G, ) is called a normal
subgroup if for any aG, aH = Ha.

Example 30 : Determine all the proper subgroups of symmetric group (S3,
o). Which of these subgroups are normal?

Solution : S = {1, 2, 3}. S3 = Set of all permutations of S.

S3 = {f0, f1, f2, f3, f4, f5 } where

0

1 2 3
f

1 2 3

 
  
 

,
1

1 2 3
f

1 3 2

 
  
 

,
3

1 2 3
f

3 2 1

 
  
 

3

1 2 3
f

2 1 3

 
  
 

,
4

1 2 3
f

2 3 1

 
  
 

,
5

1 2 3
f

3 2 1

 
  
 

Let us prepare the composition table.

0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 0 4 5 2 3

2 2 3 0 4 3 1

3 3 4 5 0 1 2

4 4 3 1 2 5 0

5 5 2 3 1 0 4

0 f f f f f f

f f f f f f f

f f f f f f f

f f f f f f f

f f f f f f f

f f f f f f f

f f f f f f f

From the table it is clear that {f0, f1}, {f0, f2,}, {f0, f3) and {f0, f4, f5} are
subgroups of (S3, 0): The left cosets of {f0, f1} are {f0, f1}, {f2, f5}, {f3, f4}.
While the right cosets of {f0, f1} are {f0, f1}, {f2, f4}, {f3, f5}. Hence {f0,
f1} is not a normal subgroup.

Similarly we can show that {f0, f2} and {f0, f1} are not normal subgroups.

124

On the other hand, the left and right cosets of {f0, f4, f5} are {f0, f4, f5} and
{f1, f2, f3}.

Hence {f0, f4, f5} is a nomal subgroup.

Example 31: Let S = {1, 2, 3}. Let G = S3 be the group of all
permutations of elements of S, under the operation of composition of
permutations.

Let H be the subgroup formed by the two permutations
1 2 3

1 2 3

 
 
 

and

1 2 3

3 2 1

 
 
 

. Find the left coset of H in G. Is H a normal subgroup? Explain

your notion of composition clearly. [Dec-02, Nov-06]

Solution : Let

0

1 2 3
f

1 2 3

 
  
 

,
1

1 2 3
f

1 3 2

 
  
 

,
3

1 2 3
f

3 2 1

 
  
 

3

1 2 3
f

2 1 3

 
  
 

,
4

1 2 3
f

2 3 1

 
  
 

,
5

1 2 3
f

3 2 1

 
  
 

 H={f0, f2}

Left Cosets of H in G :

f0H = {f0f0, f0f2} = {f0, f2} f1H = {f1f0, f1f2} = {f1, f4}

f2H = {f2f0, f2f2} = {f2, f0} f3H = {f3f0, f3f2} = {f3, f5}

f4H = {f4f0, f4f2} = {f4, f1} f5H = {f5f0, f5f2} = {f5, f3}

Right Cosets of H in G

Hf0 = {f0f0, f2f0} = {f0, f2} Hf1 = {f0f1, f2f1}={f1, f3}

Since f1 H  Hf1 , H is not a normal subgroup of G.

Example 32 : Consider the dihedral group (D4, 0). Find the subgroup of

D4 generated by
1 2 3 4

2 3 4 1

 
 
 

Is it normal subgroup. Find the left cosets

of D4.

[Dec-99][6]

Solution: D4 = {f1, f2, f3, f4, f5, f6, f7, f8}

Example 33 : Define a normal sub-group. Let S3 = Group of all
permutations of 3 elements (say 1, 2, 3). For the following subgroups of S,
find all the left cosets . Subgroup of A = {1,(1,2)}

Where I = identity permutation, (1, 2) is a transposition. Is A a normal
subgroup. State a normal subgroup of the above group if it exists. [98][7]

125

Solution : H = {f0, f3}

The left cosets of H in G are as follow.

f0H = {f0, f3} f1H = {f1, f5} f2H = {f2, f4}

f3H = {f3, f0} f4H = {f4, f2} f5H = {f5, f1}

Consider a right coset Hf1 = {f1, f4}

Since f1H  Hf1, H is not a normal subgroup of G.

6.13 UNIT END EXERCISES

1) Determine whether the set Q, the set of all rational number with
the binary operation of addition is a group. If it is a group,
determine if it abelian, specify the identity and the inverse of a
general element.

2) If G is a set of all not-zero real numbers and
2

ab
a b  , show that

(G, ) is an abelian group. [May-05]

3) Let G be a set of integers between 1 and 15 which are co-prime to
5. Find the multiplication table of G. Find 2–1, 7–1, 11–1. Is G
cyclic? [May-05]

4) Check whether it is an abelion group in each of the following
cases-

i) R, set of real numbers where a * b = a + b +7

ii) 5 = Q × Q with operation defined as (a, b) * (c, d) = (ac, ad + b).

5) Determine whether the following sets along with the binary
operation, form a group. If it is a group, state the identity, and the
inverse of an element a. If it is not a group, state the reason why ?

[Oct-03]

i) Set is P(S) = set of all subsets of S where S is a non-empty
set. The operation is that of union.

ii) Set of all non-zero real numbers, under the operation of
multiplication.

6) Let H be a subgroup of a group G. Define the following [Oct-03]

i) Left coset of H in G.

ii) Right coset of H in G.

7) If G is a finite group then prove that
G

a e .






126

7

CODES AND GROUP CODES

Unit Structure :

7.0 Objectives

7.1 Introduction

7.2 Group Code

7.3 Additional Results From Boolean Matrices

7.4 Decoding And Error Correction

7.5 Maximum Likelihood Technique

7.6 Unit End Exercise

7.0 OBJECTIVES :

 To know about group code. Coding theory has developed
techniques to detect and correct errors.

 To know about parity check matrix and decode words using
maximum likelihood technique.

7.1 INTRODUCTION :

In today’s modern world of communication, data items are
constantly being transmitted from point to point.

Different devices are used for communication. The basic unit of
information is message. Messages can be represented by sequence of dots
and dashes.

Let  0,1 B be the set of bits. Every character or symbol can be

represented by sequence of elements of B. Message are coded in O’s and
1’s and then they are transmitted. These techniques make use of group
theory. We will see a brief introduction of group code in this chapter. Also
we will see the detection of error in transmitted message.

127

The set  0,1 B is a group under the binary operation  whose

table is as follows :

 0 1

0 0 1

1 1 0

We have seen that B is a group as the 2 , where + is only mod 2
addition.

If follows from theorem - “If G1 and G2 are groups then

1 2G G G  is a group with binary operation defined by

     1 1 2 2 1 2 1 2a ,b a ,b a ,a ,b ,b       . So mB B B B     (m factors) is

a group under the operation  defined by

     1 2 m 1 2 m 1 1 2 2 m mx , x x y , y y x y , x y , x y             

observe that Bm has 2m elements. i.e. order of group Bm is 2m.

Important Terminology :

Let us choose an integer n m and one-to-one function
m ne:B B   .

1) Encoding Function :
The function e is called an (m, n) encoding function. It means that

every word in Bm as a word in Bn.

2) Code word :

If mb B then e(b) is called the code word

3) Weight :

For nx B the number of 1’s in x is called the weight of x and is

denoted by x .

e.g. i)  5x 10011 B w x 3   

ii)  3x 001 B w x   

4) x y  Let nx,y B , then x y is a sequence of length n that

has 1’s in those positions x & y differ and has O’s in those positions x & y
are the same. i.e. The operation + is defined as 0 + 0 = 0 0 + 1 = 1 1 + 1
= 0 1 + 0 = 1

128

e.g. if 5x, y B 

x 00101, y 10110

x y 10011

w (x y) 3

  

  

   

5) Hamming Distance :

Let mx, y B .  The Hamming Distance  x,y between x and y is

the weight of x y . It is denoted by x y . e.g. Hamming distance

between x & y can be calculated as follows : if x = 110110, y = 000101

x y = 110011 so x y = 4.

6) Minimum distance :

Let nx, y B .  then minimum distance = min   nd x,y / x,y B   .

Let 1 2 nx , x x   are the code words, let any ix , i 1 n     is a

transmitted word and y be the corresponding received word. Then ky x

if  kd x ,y is the minimum distane for k = 1, 2, --- n. This criteria is

known as minimum distance criteria.

7) Detection of errors :

Let  m ne : B B m n   is an encoding function then if minimum

distane of e is (k + 1) then it can detect k or fewer errors.

8) Correction of errors :

Let  m ne : B B m n   is an encoding function then if minimum

distance of e is (2k + 1) then it can correct k or fewer errors.

Weight of a code word : It is the number of 1’s present in the given code
word.

Hamming distance between two code words : Let 1 2 ...    mx x x x and

1 2 ...    my y y y be two code words. The Hamming distance between

them,  , x y , is the number of occurrences such that i ix y for i 1, m  .

Example 7.1 : Find the weights of the following code words.

Example 7.1 : Define weight of a codeword. Find the weights of the
following. [Apr-04, May-06]

(a) 010000x (b) 11100x

(c) 00000x (d) 11111x

(e) 01001x (f) 11000x

129

Solution : Weight of a code word :

(a) 010000 1     x (b) 11100 3     x

(c) 00000 0     x (d) 11111 5     x

(e) 2  x (f) 2  x

Example 7.2 : Define Hamming distance. Find the Hamming distance
between the codes. [Apr-04]
(a) 010000, 000101  x y (b) 001100, 010110  x y

Solution : Hamming distance :

(a)  , 010000 000101 010101 3             x y x y

(b)  , 001100 010110 011010 3             x y x y

Example 7.3 : Let d be the  4, 3 decoding function defined by

4 3: d B B . If 1 2 1...     my y y y ,   1 2 ...    md y y y y .

Determine  d y for the word y is 4B . [Nov-06]

(a) y 0110 (b) y 1011

Solution : (a)  d y 011 (b)  d y 101

Example 7.4 : Let 6 2: d B B be a decoding function defined by for

1 2 6...   y y y y . Then   1 2 d y z z .

where

zi 1 if  1 2 4, ,  i iy y y has at least two 1’s.

0 if  1 2 4, ,  i iy y y has less than two 1’s.

Determine  d y for the word y in 6B .

(a) 111011y (b) 010100y

Solution : (a)   11d y (b)   01d y

Example 7.5 : The following encoding function 1: m mf B B is called

the parity  , 1 m m check code. If 1 2 ...    m
mb b b b B , define

  1 2 1...     m me b b b b b

where

1 0 mb if b  is even.

= 1 if b  is odd.

Find  e b if (a) b 01010 (b) b 01110

130

Solution : (a)  e b 010100 (b)  e b 011101

Example 7.6 : Let 2 6: e B B is an (2,6) encoding function defined as
e(00) = 000000, e(01) = 011101
e(10) = 001110, e(11) = 111111

a) Find minimum distance.
b) How many errors can e detect?
c) How many errors can e correts?

Solution : Let 6
0 1 2 3x , x , x , x B    where 0 1x 000000, x 011101,  

2 3x 001110, x 111111  

   

   

   

   

   

   

0 1

0 2

0 3

1 2

1 3

2 3

w x x w 011101 4

w x x w 001110 3

w x x w 111111 6

w x x w 010011 3

w x x w 100010

w x x w 110001 3

   

   

   

   

   

   

Minimum distance = e = 2
d) Minimum distance = 2
An encoding function e can detect k or fewer errors if the minimum

distance is k + 1. k 1 2 k 1    
The function can detect 1 or fewer (i.e. 0) error.

e) e can correct k or fewer error if minimum distance is 2k + 1.
2k + 1 = 2

k =
1

2

e can correct
1

2
or less than

1

2
i.e. 0 errors.

7.2 GROUP CODE :

An  m, n encoding function : m ne B B is called a group code

if range of e is a subgroup of Bn. i.e. (Ran (e),) is a group.

Since Ran (e) nCB and if (Ran (e),) is a group then Ran(e) is a

subgroup of Bn. If an encoding function : m ne B B (n < n) is a group
code, then the minimum distance of e is the minimum weight of a nonzero
codeword.

131

7.3 ADDITIONAL RESULTS FROM BOOLEAN
MATRICES :

(a) Mod-2 Addition : Consider the set B with +. Now let    ijD d

and    ijE e be m n Boolean matrices. We denote the mod-2 sum

D E as the m n Boolean matrix    ijF f .

where

 ij ij ijf d e , 1 , 1    i m j n

Here + is addition in B.

For example

00 0 1 1 1 0 01 1 1 1

00 0 1 1 1 01 1 1 1 1

00 0 1 1 1 01 1 1 1 1

    
    

           
    

    

(b) Mod-2 Product : D E

01
0 01 1 11 1

0 01 1 10 1

 
    

           
    

 

Theorem : Let D and E be m p Boolean matrices, and F be a p n

Boolean matrix. Then

          D E F D F E F

That is distributive property holds for  and  .

Theorem 7.1 : Let m and n be non-negative integers with m n ,
 r n m and let H be an n r Boolean matrix. Then the function

: n r
Hf B B defined by   ,    n

Hf x x H x B is a homomorphism

from the group nB to the group 'B .

Proof : Let x and y be elements in nB then

     Hf x x y H

      x H y H

    H Hf x f y

Hence, Hf is a homomorphism from the group nB to the group 'B .

132

Corollary 7.1 : Let m, n, r, H and hf be as in Theorem 2. Then

 0   nN x B x H is a normal subgroup of nB .

Parity Check Matrix : Let m n and r n m  . An n r Boolean matrix

11 12 1r

21 22 2r

m1 m2 mr

h h h. . .

h h h. . .

.

.

.

h h h. . .
H

0 . . . 01

0 . . . 01

.

.

.

0 0 . . . 0

 
 
 
 
 
 
 
 
 

   
 
 
 
 
 
 
 
  

whose last r rows form r r identity matrix is called a parity check matrix.

we use H to define an encoding function : m n
He B B . If

1 2 ...    mb b b b , let   1 2 1 2... ...      H m rx e b b b b x x x ,

where

1 1 11 2 21 1...    m mx b h b h b h

2 1 12 2 22 2...    m mx b h b h b h

………………………………….

1 1 2 2 ...   r r r m mrx b h b h b h

Theorem 7.2 : Let 1 2 1 2 1... ...       n
m mx y y y b x x x B . Then 0 x H if

and only   Hx e b for some  mb B .

Corollary 7.2 :      m m
H He B e b b B is a subgroup of nB .

133

7.4 DECODING AND ERROR CORRECTION :

Consider an  m, n encoding function : m ne B B , we require an

(n,m) decoding function associate with e as : n md B B .

The method to determine a decoding function d is called maximum
likelihood technique.

Since m mB 2 .

Let m
kx B be a codeword, k = 1, 2, ---m and the received word is y then.

Min     m
k i1 k 2 d x , y d x , y        for same i then xi is a codeword

which is closest to y. If minimum distance is not unique then select on
priority

7.5 MAXIMUM LIKELIHOOD TECHNIQUE :

Given an  m, n encoding function : m ne B B , we often need to

determine an  n, m decoding function : n md B B associated with e.

We now discuss a method, called the maximum likelihood techniques, for

determining a decoding function d for a given e. Since mB has m2

elements, there are m2 code words in nB . We first list the code words in
a fixed order.

     21 2
, , ...,  

m

x x x

If the received word is 1x , we compute   ,
1

i
x x for 1 2  mi

and choose the first code word, say it is  s
x , such that

      1 1
1 2

min , ,
 

     
i s

mi

x x x x

That is,  s
x is a code word that is closest to 1x , and the first in the

list. If    
s

x e b , we define the maximum likelihood decoding function

d associated with e by

  td x b

134

Observe that d depends on the particular order in which the code

words in  ne B are listed. If the code words are listed in a different

order, we may obtain, a different likelihood decoding function d
associated with e.

Theorem 7.3 : Suppose that e is an  m, n encoding function and d is a

maximum likelihood decoding function associated with e. Then  e, d

can correct k or fewer errors if and only if the minimum distance of e is at
least 2k 1 .

Example 7.7 : Let m 2, n 5   and

01 1

0 1 1
H 0 01

0 01

0 0 1

 
 
 
   
 
 
  

. Determine the

group code 2 5
He : B B . [May-07]

Solution : We have  2B 00, 01,10,11    . Then   1 2 3e 00 00x x x

where

 

1

2

3

0.1 0.0 0

0.1 0.1 0

0.0 0.1 0

00 00000

  

  

  

 

x

x

x

e

Now,

  1 2 301 01e x x x

where

 

1

2

3

0.1 1.0 0

0.1 1.1 1

0.0 1.1 1

01 01011

  

  

  

 

x

x

x

e

Next

  1 2 310 10e x x x

 

1

2

3

1.1 0.0 1

1.1 1.0 1

1.0 0.1 0

10 10110

  

  

  

 

x

x

x

e

 11 11101e

135

Example 7.8 : Let

0 01

0 1 1

1 1 1H
0 01

0 01

0 0 1

 
 
 
 

   
 
 
 
 

be a parity check matrix. determine

the  3, 6 group code 3 6
He : B B .

Solution : First find            e 000 , e 001 , e 010 , e 011 , e 100 , e 101 ,    

   e 110 , e 111 .

 

 

 

 

e 000 000000

e 001 001111

e 010 010011

e 100 011100









 

 

 

 

e 100 100100

e 101 101011

e 110 110111

e 111 111000









Example 7.9 : Consider the group code defined by 2 5e : B B such that

       e 00 00000 e 01 01110 e 10 10101 e 11 11011       .

Decode the following words relative to maximum likelihood decoding
function.
(a) 11110 (b) 10011 (c) 10100

Solution : (a) 1110tx

Compute   1
, 00000 11110 11110 4        tx x

  2
, 01110 11110 10000 1        tx x

  3
, 10101 11110 01011 3        tx x

  4
, 11011 11110 00101 2        tx x

      2
min , 1 ,    

i
t tx x x x

 e 01 01110  is the code word closest to 11110tx .

 The maximum likelihood decoding function d associated with e is

defined by   01td x .

136

(b) 10011tx

Compute   1
, 00000 10011 11101 4        tx x

  2
, 01110 10011 00110 2        tx x

  3
, 10101 11110 01011 3        tx x

  4
, 11011 10011 01000 1        tx x

      4
min , 1 ,    

i
t tx x x x

 e 11 11011  is the code word closest to 10011tx .

 The maximum likelihood decoding function d associated with e is

defined by   11td x .

(c) 10100tx

Compute   1
, 00000 10100 10100 2        tx x

  2
, 01110 10100 11010 3        tx x

  3
, 10101 10100 00001 1        tx x

  4
, 11011 10100 01111 4        tx x

      3
min , 1 ,    

i
t tx x x x

 e 10 10101  is the code word closest to 10100tx .

 The maximum likelihood decoding function d associated with e is

defined by   10td x .

Example 7.10 : Let

0 1 1

01 1
H 0 01

0 01

0 0 1

 
 
 
   
 
 
  

be a parity check matrix. decode the

following words relative to a maximum likelihood decoding function

associated with He : (i) 10100, (ii) 01101, (iii) 11011.

Solution : The code words are      e 00 00000, e 01 00101, e 10 10011     ,

 e 11 11110 . Then  N 00000, 00101,10011,11110    . We implement

the decoding procedure as follows. Determine all left cosets of N in B5,

137

as rows of a table. For each row 1, locate the coset leader ,i and rewrite

the row in the order.

1,  i

Example 7.11 : Consider the  2, 4 encoding function e as follows. How

many errors will e detect? [May-06]

       e 00 0000, e 01 0110, e 10 1011, e 11 1100      

Solution :

 0000 0110 1011 1100

0000 --- 0110 1011 1100

0110 --- 1101 1010

1011 --- 0111

1100 ---

Minimum distance between distinct pairs of e 2 k 1 2   k 1  .
 the encoding function e can detect 1 or fewer errors.

Example 7.12 : Define group code. Show that  2, 5 encoding function

2 5e : B B defined by      e 00 0000, e 10 10101, e 11 11011     is a

group code. [May-06]

Solution : Group Code

 00000 01110 10101 11011

00000 00000 01110 10101 11011

01110 01110 00000 11011 10101

10101 10101 11011 00000 01110

11011 11011 10101 01110 00000

Since closure property is satisfied, it is a group code.

Example 7.13 : Define group code. show that  2, 5 encoding function

2 5e : B B defined by      e 00 00000, e 01 01110, e 10 10101     ,

138

 e 11 11011 is a group code. Consider this group code and decode the

following words relative to maximum likelihood decoding function.
(a) 11110 (b) 10011. [Apr-04]

Solution : Group Code

 00000 01110 10101 11011

00000 00000 01110 10101 11011

01110 01110 00000 11011 10101

10101 10101 11011 00000 01110

11011 11011 10101 01110 00000

Since closure property is satisfied, it is a group code.

Now, let        1 2 3 4
00000, 01110, 10101, 11011      x x x x .

(a) 11110tx

    1 1
, 00000 11110 11110 4            t tx x x x

    2 2
, 01110 1110 10000 1            t tx x x x

    3 3
, 10101 1110 01011 3            t tx x x x

    4 4
, 11011 1110 00101 2            t tx x x x

 Maximum likelihood decoding function  td x 01 .

(b) 10011tx

    1 1
, 00000 10011 10011 3            t tx x x x

    2 2
, 01110 10011 11101 4            t tx x x x

    3 3
, 10101 10011 00110 2            t tx x x x

    4 4
, 11011 10011 01000 1            t tx x x x

 Maximum likelihood decoding function   11td x .

139

Example 7.14 : Let

0 01

0 1 1

1 1 1H
0 01

0 01

0 0 1

 
 
 
 

   
 
 
 
 

be a parity check matrix. Determine

the  3, 6 group code 3 6
He : B B .

Solution :  3B 000, 001, 010, 011,100,101,110,111       

     H H He 000 000000 e 001 001111 e 010 010011    

     H H He 011 011100 e 100 100100 e 101 101011    

   H He 110 110111 e 111 111000  

 Required group code = 000000 , 001111, 010011, 011100,100100,    

101011,110111,111000 

Example 7.15 : Show that  2, 5 encoding function 2 5e : B B defined

by        e 00 00000, e 01 01110, e 10 10101, e 11 11011       is a

group code. [May-06]
OR

Test whether the following  2, 5 encoding function is a group code.

       e 00 00000, e 01 01110, e 10 10101, e 11 11011       [Oct-03]

Solution :

 00000 01110 10101 11011

00000 00000 01110 10101 11011

01110 01110 00000 11011 10101

10101 10101 11011 00000 01110

11011 11011 10101 01110 00000

Since closure property is satisfied, it is a group code.

Example 7.16 : Show that the  3, 7 encoding function 3 7e : B B

defined by

     e 000 0000000 e 001 0010110 e 010 0101000    

140

     e 011 0111110 e 100 1000101 e 101 1010011    

   e 110 1101101 e 111 1111011   is a group code.

Solution :

 0000000 0010110 0101000 0111110 1000101 1010011 1101101 1111011

0000000 0000000 0010110 0101000 0111110 1000101 1010011 1101101 1111011

0010110 0010110 0000000 0111110 0101000 1010011 1000101 1111011 1101101

0101000 0101000 0111110 0000000 0010110 1101101 1111011 1000101 1010011

0111110 0111110 0101000 0010110 0000000 1111011 1101101 1010011 1000101

1000101 1000101 1010011 1101101 1111011 0000000 0010110 0101000 0111110

1010011 1010011 1000101 1111011 1101101 0010110 0000000 0111110 0101100

1101101 1101101 1111011 1000101 1010011 0101000 0111110 0000000 0010110

1111011 1111011 0000000

Since closure property is satisfied, it is a group code.

Example 7.17 : Consider the  3, 8 encoding function 3 8e : B B

defined by

     e 000 0000000 e 100 10100100 e 001 10111000    

     e 101 10001001 e 010 00101101 e 110 00011100    

   e 011 10010101 e 111 00110001   .

How many errors will e detect?

Solution :

 00000000 10100100 10111000 10001001 00101101 00011100 10010101 00110001

0000000 00000000 10100100 10111000 10001001 00101101 00011100 10010101 00110001

10100100 10100100 00000000 00011100 00101101 10001001 10111000 00110001 10010101

10111000 00000000 00011100 00000000 001100001 10010101 10100100 00101101 10001001

10001001 10001001 00101101 00110001 00000000 10100100 10010101 00011100 10111000

00101101 00101101 10001001 10010101 10100100 00000000 00110001 10111000 00011100

00011100 00011100 10111000 10100100 10010101 00110001 00000000 10001001 00101101

10010101 10010101 00110001 00101101 00011100 10111000 10001001 00000000 10100100

00110001 00110001 10010101 10001001 10111000 00011100 00101101 10100100 0000000

Minimum distance between pairs of e 3 .
k 1 3 k 2     The encoding function e can detect 2 or fewer

errors.

141

Example 7.18 : Consider parity check matrix H given by

01 1

0 1 1
H 0 01

0 01

0 0 1

 
 
 
   
 
 
  

. Determine the group code H 2 5e : B B . Decode the

following words relative to a maximum likelihood decoding function

associated with He : 01110, 11101, 00001, 11000   . [Apr-04, May-07]

Solution :  2B 00, 01,10,11   

  1 2 300 00He x x x where 1 0.1 0.0 0  x

2 0.1 0.1 0  x

3 0.0 0.1 0  x  00 00000 He

  1 2 301 01He x x x where 1 0.1 1.0 0  x

2 0.1 1.1 1  x

3 0.0 1.1 1  x  01 01011 He

  1 2 310 10He x x x where 1 1.1 0.0 1  x

2 1.1 0.1 1  x

3 1.0 0.1 0  x  01 10110 He

  1 2 311 11He x x x where 1 1.1 1.0 1  x

2 1.1 1.1 0  x

3 1.0 1.1 1  x  01 11101 He

 Desired group code =  00000, 01011, 10110, 11101  

(1) 01110tx

    1 1
, 00000 01110 01110 3            t tx x x x

    2 2
, 01011 01110 00101 2            t tx x x x

    3 3
, 10110 01110 11000 2            t tx x x x

    4 4
, 11101 01110 10011 3            t tx x x x

 Maximum likelihood decoding function  td x 01

142

(2) 11101tx

    1 1
, 00000 11101 11101 4            t tx x x x

    2 2
, 01110 11101 10110 3            t tx x x x

    3 3
, 10101 11101 01011 3            t tx x x x

    4 4
, 11011 11101 00000 0            t tx x x x

 Maximum likelihood decoding function  td x 11

(3) 00001tx

    1 1
, 00000 00001 00001 1            t tx x x x

    2 2
, 01011 00001 01010 2            t tx x x x

    3 3
, 10110 00001 10111 4            t tx x x x

    4 4
, 11101 00001 11100 3            t tx x x x

 Maximum likelihood decoding function  td x 00

(2) 11000tx

    1 1
, 00000 11000 11000 2            t tx x x x

    2 2
, 01110 11000 10011 3            t tx x x x

    3 3
, 10101 11000 01101 3            t tx x x x

    4 4
, 11011 11000 10000 1            t tx x x x

 Maximum likelihood decoding function   11td x

Example 7.19 : Let

1 1

0 1H
01

0 1

 
 
   
 
 
 

be a parity check matrix. decode 0110

relative to a maximum likelihood decoding function associated with He .

[Dec-04]

143

Solution : 2 5: He B B

 2 00, 01,10,11   B

  1 200 00He x x where 1 0.1 0.0 0  x

2 0.1 0.1 0  x  00 0000 He

  1 201 01He x x where 1 0.1 1.0 0  x

2 0.1 1.1 1  x  01 0101 He

  1 210 10He x x where 1 1.1 0.0 1  x

2 1.1 0.1 1  x  01 1011 He

  1 211 11He x x where 1 1.1 1.0 1  x

2 1.1 1.1 0  x  01 1110 He

Let        1 2 3 4
0000, 0101, 1011, 1110      x x x x .

Let 1 0110x .

    1 1
, 0000 0110 0110 2            t tx x x x

    2 2
, 0101 0110 0011 2            t tx x x x

    3 3
, 1011 0110 1011 3            t tx x x x

    4 4
, 1110 0110 1000 1            t tx x x x

           4 4
, , 11 11         

i
t t tMin x x x x and e x d x .

Example 7.20 : Consider the  2, 5 group encoding function defined by

       e 00 00000, e 01 01101, e 10 10011, e 11 11110       and d be an

associated maximum likelihood function. Use d to decode the following
words. [May-03, May-05]
(i) 10100 (ii) 01101

Solution : Let        1 2 3 3
00000, 01011, 10110, 11110      x x x x

(1) 10100tx

    1 1
, 00000 10100 10100 2            t tx x x x

    2 2
, 01101 10100 11001 3            t tx x x x

144

    3 3
, 10011 10100 00111 3            t tx x x x

    4 4
, 11110 10100 01010 2            t tx x x x

     1
, ,     

i
t tMin x x x x i.e.  1

x is the code word which is closest

to tx and 1 i 4 

The first in their list in the list and    1
00 e x . So we define maximum

likelihood decoding function d associated with e by  td x 00 .

(2) 01100tx

    1 1
, 00000 01101 01101 3            t tx x x x

    2 2
, 01101 01101 00000 0            t tx x x x

    3 3
, 10011 01101 11110 4            t tx x x x

    4 4
, 11110 01101 10011 3             t tx x x x

     i 2
t tMin x , x x , x      i.e.  2

x is the code word which is

closest to tx and 1 i 4 

The first in their list in the list and    2
01 e x . So we define maximum

likelihood decoding function d associated with e by   01td x .

Example 7.21 : Let

1 1

0 1
H 01

01

0 1

 
 
 
   
 
 
  

be a parity check matrix. [Dec-02]

i) Determine the  3, 5 group code 3 5
He : B B .

ii) Construct the decoding table and decode the following words using
maximum likelihood technique – 1) 00111, 2) 10111, 3) 11001

145

Solution : (i) 3 5
He : B B .

 3B 000, 001, 010, 011,100,101,110,111       

  1 2000 000He x x where 1 0.1 0.0 0.1 0   x

2 0.1 0.1 0.0 0   x  He 000 00000 

  1 2001 001He x x where 1 0.1 0.0 1.1 1   x

2 0.1 0.1 1.0 0   x  He 001 00110 

  1 2010 010He x x where 1 0.1 1.0 0.1 0   x

2 0.1 1.1 0.0 1   x  He 010 01001 

  1 2011 011He x x where 1 0.1 1.0 1.1 1   x

2 0.1 1.1 1.0 1   x  He 011 01111 

  1 2100 100He x x where 1 1.1 0.0 0.1 1   x

2 1.1 0.1 0.0 1   x  He 100 10011 

  1 2101 101He x x where 1 1.1 0.0 1.1 0   x

2 1.1 0.1 1.0 1   x  He 001 10101 

  1 2110 110He x x where 1 1.1 1.0 0.1 1   x

2 1.1 1.1 1.0 0   x  He 110 11010 

  1 2111 111He x x where 1 1.1 1.0 1.1 0   x

2 1.1 1.1 1.0 0   x  He 111 11100 

Let        1 2 3 4
00000, 00110, 01001, 01111      x x x x

       5 6 7 8
10011, 10101, 11010, 11100      x x x x

(ii) (1) Let 00111tx

    1 1
, 00111 3        t tx x x x

    2 2
, 00001 1        t tx x x x

    3 3
, 01110 3        t tx x x x

146

    4 4
, 01000 1        t tx x x x

    5 5
, 10100 2        t tx x x x

    6 6
, 10010 2        t tx x x x

    7 7
, 11101 4        t tx x x x

    8 8
, 11011 4        t tx x x x

(2) Let 10111tx

    1 1
, 10111 4        t tx x x x

    2 2
, 10001 2        t tx x x x

    3 3
, 11110 4        t tx x x x

    4 4
, 11000 2        t tx x x x

    5 5
, 00100 1        t tx x x x

    6 6
, 00010 1        t tx x x x

    7 7
, 01101 3        t tx x x x

    8 8
, 01011 3        t tx x x x

(3) Let 11001tx

    1 1
, 11001 3        t tx x x x

    2 2
, 11111 5        t tx x x x

    3 3
, 10000 1        t tx x x x

    4 4
, 10110 3        t tx x x x

    5 5
, 01010 2        t tx x x x

    6 6
, 01100 2        t tx x x x

    7 7
, 00011 2        t tx x x x

147

    8 8
, 00101 2        t tx x x x

           3 3
, , 010 010         

i
t t tMin x x x x and e x d x .

Example 7.22 : Let

01 1

01 1

0 1 1H
0 01

0 01

0 0 1

 
 
 
 

   
 
 
 
 

be a parity check matrix. determine

the corresponding group code.

i) How many errors will the above group code detect?
ii) Explain the decoding procedure with an example. [Oct-03]

Solution : Given H is a parity check matrix of  3, 6 group code.

3 6
He : B B .

 3B 000, 001, 010, 011,100,101,110,111       

       H H H He 000 000000, e 001 001011, e 010 010101, e 011 011111      

       H H H He 100 100110, e 101 101110, e 110 110011, e 111 111000       .

(i) Min distance of a group code = min weight of non-zero code word = 3
k 1 3 k 2    

 The group code can detect at the most 2 or fewer errors.

(ii) Maximum likelihood decoding procedure :

Let                1 2 3 4
000 , 001 , 010 , 011H H H He x e x e x e x      

               5 6 7 8
100 , 101 , 110 , 111H H H He x e x e x e x      

and let tx be transmitted codeword. Find   ,
i

tx x  , take minimum.

If      , ,
i s

t tMin x x x x    then maximum likelihood decoding

function d can be defined as  td x b where    s
He b x . If two or

more  ix have the same minimum value then we select the  s
x

whichever comes first in the list and define the decoding function
accordingly.

148

Example 7.23 : Consider  3, 6 encoding function e as follows. [May-07]

       e 000 000000, e 001 000110, e 010 010010, e 011 010100      

       e 100 100101, e 101 100011, e 110 110111, e 111 110001      

i) Show that the encoding function e is a group code.

ii) Decode the following words with maximum likelihood technique :
101101, 011011.

Solution : (i)

 000000 000110 010010 010100 100101 100011 110111 110001

000000 000000 000110 010010 010100 100101 100011 110111 110001

000110 000110 000000 010100 010010 100011 100101 110001 110111

010010 010010 010100 000000 000110 110111 110001 100101 100011

010100 010100 010010 000110 000000 110001 110111 100011 100101

100101 100101 100011 110111 110001 000000 000110 010010 010100

100011 100011 100101 110001 110111 000110 000000 010100 010010

110111 110111 110001 100101 100011 010010 010100 000000 000110

110001 110001 110111 100011 100101 010100 010010 000110 000000

(ii)

Let    1 2
000000, 000110,x x    3

010010,x   4
010100,x 

 5
100101x  ,  6

100011x  ,  7
110111,x   8

110001x  .

(1) Let 1 101101x 

    1 1
1 1, 000000 101101 101101 4x x x x      

    2 2
1 1, 000110 101101 101011 4x x x x      

    3 3
1 1, 010010 101101 111111 6x x x x      

    4 4
1 1, 010100 101101 111001 4x x x x      

    5 5
1 1, 100101 101101 001000 1x x x x      

    6 6
1 1, 100011 101101 001110 3x x x x      

    7 7
1 1, 110111 101101 011010 3x x x x      

149

    8 8
1 1, 110001 101101 0111000 3x x x x      

     5
1 1,

i
Min x x x x    . Thus  5

x is the code word that is closest

to 1x and    5
011e x .

 We define maximum likelihood function d associated with e by

 1 100d x  .

(2) Let 1 011011x 

    1 1
1 1, 000000 011011 011011 4x x x x      

    2 2
1 1, 000110 011011 011101 4x x x x      

    3 3
1 1, 010010 011011 001001 2x x x x      

    4 4
1 1, 010100 011011 001111 4x x x x      

    5 5
1 1, 100101 011011 111110 5x x x x      

    6 6
1 1, 100011 011011 111000 3x x x x      

    7 7
1 1, 110111 011011 101100 3x x x x      

    8 8
1 1, 110001 011011 101010 3x x x x      

     3
1 1,

i
Min x x x x    . Thus  3

x is the code word that is closest

to 1x and    3
011e x .

 We define maximum likelihood function d associated with e by

 1 010d x  .

150

Example 7.24 : Let

1 0 0

1 1 0

0 1 1
H

1 0 0

0 1 0

0 0 1

 
 
 
 

   
 
 
 
 

be a parity check matrix.

Decode the following words relative to a maximum likelihood decoding

function associated with He : (i) 011001, (ii) 101001, (iii) 111010.

Example 7.25 : Let

1 0 0

1 1 0

0 1 1
H

1 0 0

0 1 0

0 0 1

 
 
 
 

   
 
 
 
 

be a parity check matrix. [Nov-06]

Determine the  3, 6 encoding function 3 6
He : B B . Decode the words

011001 relative to a maximum likelihood decoding function associated

with He .

Solution : Let 3 6
He : B B

 3B 000, 001, 10, 11,100,101,110,111       

       1 2
000 000000 , 001 001011 ,H He x e x    

       3 4
010 010110 , 011 011101 ,H He x e x      

       5 6
100 100100 , 101 101111 ,H He x e x      

       7 8
110 110010 , 111 111001H He x e x      

(i) Let 1 011001x 

    1 1
1 1, 0110001 3x x x x    

    2 2
1 1, 010010 2x x x x    

    3 3
1 1, 001111 4x x x x    

    4 4
1 1, 00100 1x x x x    

151

    5 5
1 1, 111101 5x x x x    

    6 6
1 1, 110110 4x x x x    

    7 7
1 1, 101011 4x x x x    

    8 8
1 1, 1000000 1x x x x    

     4
1 1,

i
Min x x x x    . Thus  4

x is the code word that is closest

to 1x and    4
011e x .

 We define maximum likelihood function d associated with e by

 1 011d x  .

(ii) Let 1 101001x 

    1 1
1 1, 101001 3x x x x    

    2 2
1 1, 100010 2x x x x    

    3 3
1 1, 111111 6x x x x    

    4 4
1 1, 110100 3x x x x    

    5 5
1 1, 001101 3x x x x    

    6 6
1 1, 000110 2x x x x    

    7 7
1 1, 011011 4x x x x    

    8 8
1 1, 010000 1x x x x    

     8
1 1,

i
Min x x x x    . Thus  8

x is the code word that is closest

to 1x and    8
111e x .

 We define maximum likelihood function d associated with e by

 1 111d x  .

152

Example 7.26 : Let

0 1 1

1 0 1

H 1 0 0

0 1 0

0 0 1

 
 
 
   
 
 
  

be a parity check matrix.

Decode the following words relative to a maximum likelihood decoding

function associated with He : (i) 10100, (ii) 01101, (iii) 11011.

Solution : Let 2 5
He : B B where  2B 00, 01,10,11   

       H H H He 00 00000, e 01 01101, e 10 10011, e 11 11110       

Use the above decoding procedure.

Example 7.27 : Consider the  2, 9 encoding function e defined by

   e 00 000 000 000, e 01 011 101 100      

   e 10 101 110 001, e 11 110 001 111      

Let d be an associated maximum likelihood function. How many errors

will  e, d correct.

Solution :

Let    1 2
000 000 000, 011 101 100,x x        3

101 110 001,x   

 4
110 001 111x    .

 000 000 000 011 101 100 101 110 001 110 001 111

000 000 000 - 011 101 100 101 110 001 110 001 111

011 101 100 - 110 011 101 101 100 011

101 110 001 - 011 111 110

110001111

 Minimum distance = 5 2k 1 5 k 2    

 e, d  can correct k 2 or fewer errors.

7.6 UNIT END EXERCISE

(1) Define the following. [Dec-02]

(i) Hamming Distance,

(ii) Minimum distance of an encoding function

(iii) Group Code

153

(iv) Decoding function

(2) Consider the  2, 6 encoding function e :

       e 00 000000 e 01 011110 e 10 101010 e 11 111000      

Find the minimum distance (ii) How many errors will e detect.
[May-03]

3) Let

0 1 1

1 0 1

H 1 0 0

0 1 0

1 0 1

  
   
   
 
  

   

be a panty check matrix. decode the following

words related to maximum likelihood technique associated with He @

a) 10100 b) 01101 c) 11011

4) Consider the (2, 4) group encoding function 2 4e:B B   defined by
e(00) = 0000 e(10) = 1001
e(01) = 0111 e(11) = 1111

Decode the following words relative to a maximum likelihood
decoding function a) 0011 b) 1011 c) 1111.

5) Consider the (3, 5) group encoding function 3 5e:B B   defined by
e(000) = 0000 e(100) = 10011
e(001) = 00110 e(101) = 10101
e(010) = 01001 e(110) = 11010
e(011) = 01111 e(111) = 11100

Decode the following words relative to a maximum likelihood
decoding function. a) 11001 b) 01010 c) 00111.

















154

8

CLASSIFICATION OF LANGUAGE

[Syllabus : Classification of Languages : Overview of Languages,
Representation of regular languages and grammars, Finite state machines.]

Unit Structure

8.0 Objectives

8.1 Introduction

8.2 Strings and regular expression

8.3 Regular sets

8.4 Languages

8.5 Classification of phrase structure Grammer

8.6 Representation of special grammars and languages :

8.7 Regular Grammars and Regular Expression

8.8 Finite State Machines

8.9 Moore Machine (recognition machine)

8.10 Unit End Exercises

8.11 References

8.0 OBJECTIVES:

To study there types of structure used in models of computation,
namely, grammar, finite-state machines & moore machine. Which will
help us to understand computer science and data networking.

8.1 INTRODUCTION:

Computer can perform many tasks. Given a task, two questions
arise. The first is : can it be carried out using a computer? Once we know
that this first question has an affirmative answer, we an ask the second
question : How can the task be carried out? Models of computation are
used to help answer these questions.

Example 8.1 : Let A = {Sachin, Saurav, Virat, well, runs, fields, quickly,
slowly}.

155

Then A* contains real sentences such as “Sachin runs quickly” and
“Virat fields well” as well as nonsense sentences such as “Quickly Sachin
well Virat Slowly”.

Here we separate the elements in each sequence with spaces. It is
often done when the elements of A are words.

Regular Expression : The idea of a recursive formula for a sequence is
useful in more general strings. In the formal languages and the finite state
machines the concept of regular expression plays on important role.

A regular expression over A is a string constructed from the

elements of A and the symbols  , , , *,   according to the following

definition.

1. The symbol  is a regular expression.

2. If pA, the symbol p is a regular expression.

3) If x and y are regular expressions, then the expression xy is
regular.

4) If x and y regular expressions, then the expression x y is regular.

5) If x is a regular expression, then x* is regular.

Example 8.2 : Let A = {0,1}. Show that following expressions are all

regular expressions over A. a)  **0 0 1 b)  *00 0 1 *1  

c)  01 * (01 1) *

8.2 STRINGS AND REGULAR EXPRESSION:

Given a set A, we can construct the set A* consisting of all finite
sequences of elements of A. Often the set A is not a set of numbers, but
some set of symbols. In this case, A is called an alphabet and the finite
sequences in A* are called words from A, or sometimes strings from A.

For this case in particular, the sequences in A* are not written with
commas. We assume that A* contains empty sequence or empty string,
containing no symbols, and we denote this string by .

Catenation :
If w1 = s1,s2....sn and w2 = t1,t2…..tk are elements of A* for some set

A, we define the catenation of w1, and w2 as the sequence s1,s2…..sn

t1,t2…..tk. The catenation of w1, with w2 is written as w1,.w2 or w1w2 and is
another element of A*. Note that if wA* then w* = w and *w = w.
This property is convenient and is one of the main reasons for defining the
empty string .

156

Solution : We know from definition of regular expression that -

a) From (2) 0,1 A 0 &1    are regular expression.

From (4) 0, 1 are regular expression 0 1  is regular.

From (5) *0 & 0 1   are regular * *0 & (0 1)    are regular.

From (3) * *0 & (0 1)   are regular * *0 & (0 1)    is regular.

b) We know that 0, 1 & * *0 (0 1)  are regular.

From (3) using twice *00 * (0 1) 1    must be regular.

c) From (3) 01 is regular expression.

From (4) 1* &  *01 1 are regular.

From (3) (01)*  *01 1 is regular.

8.3 REGULAR SETS :

Associated with each regular expression over A, there is a
corresponding subset of A*. Such sets are called regular subsets of A* or
just regular sets if no reference to A is needed.

To compute the regular set corresponding to a regular expression,
we use the following rules.

1. The expression  corresponds to the set {}, where  is the empty
string in A*.

2. If xA, then the regular expression x corresponds to the set {x).

3. If  and  are regular expressions corresponding to the subsets M
and N of A*, then the expression  corresponds to
M.N = {s.t/sM and tN}. Thus MN is a set of all catenations of
strings in M with strings in N.

4. If the regular expressions  and  correspond to the subset M and
N of A, then {} corresponds to MN.

5. If the regular expression  corresponds to the subset M of A* then
{}* corresponds to the set M*. Note that M is a set of strings
from A~ Elements from M* are finite sequences of such strings,
and thus may themselves be interpreted as strings from A. Note
also that we always have M*.

Example 8.3: Let A={0, 1}. Find regular sets corresponding to the three
regular expressions (a) 0*(01)* (b) 00* (01)*l (c) (01)*(011*)

157

Solution:

(a) The set corresponding to 0*(01)* consists of al1 sequences of 0’s
and l’s. Thus the set is A*.

(b) The expression 00*(01)*1 corresponds to the set of all sequences
of 0’s and 1’s that begin with at least one 0 and end with at least
one 1.

(c) The expression (01)*(Olvl*) corresponds to the set of all sequences
of 0’s and 1’s that either repeat O1 a total n  1 times, or begins
with a total of n  0 repetitions of 01 and end with some number
k  0 of 1’s. This set includes, for example the strings 1111, 01,
0l0l01, 010101011111 and 011.

8.4 LANGUAGES :

Words in the English language can be combined in various ways.
The grammar of English tells us whether a cornbination of words in a
valid sentence.

For Example the peacock writes neatly is a valid sentence because
it is formed from a noun phrase the peacock, followed by a erb phrase
writes neatly. We do not care that it is meaningless. Since we are
concerned only with the syntax and not with its semantics i.e. meaning.

Research in the automatic translation of one language to another
has led to the concept of formal language. It is specified by a well-defined
set of rules of syntax. Rules of syntax are important not only in linguistic
but also in the study of programming languages.

Grammars - Languages can be specified in various ways. We describe
important way to specify a language, namely, through the use of a
grammar.

A grammar provides a set of symbols of various types and a set of
rules for producing words. More precisely, a grammar has a vocabulary V,
which is a set of symbols used to derive members of the language. Some
of the elements of the vocabulary cannot be replaced by other symbols.
These are called terminals, and other members of the vocabulary, which
can be replaced by other symbols, are called non terminals. The set of
terminals and non terminals are usually denoted by T and N respectively.

Definition : A phrase structure grammar G is defined to be a 4-type (V, S,

0, ), where V is a finite set, S is a subset of 0V, V S and     is a

finite relation on V*,. The element 0 is a starting point for the

substitutions. The relation *on V  specifies allowable replacements. For

example if 'P P  , we may replace P by P’. Traditionally the statement

158

'P P  is called a Production of G. then P & P’ are called the left and
right sides of the production of G.

If 0G (V,S, ,)    is a phrase structure grammar, we call s the

set of terminal symbols and N = V - S the set of non terminal symbols.
Note that V = SUN.

Derivation Tree : a derivation in the language generated by a context -
free grammar can be represented graphically using an ordered rooted tree,
called a derivation tree. The root of this tree represents the starting
symbol. The internal vertias of the tree represent the nonterminal symbols
that arise in the derivation. The leaves of the tree represent the terminal
symbols that arise.

For example - derivation tree for the derivation of “the hungry rabbit eats
quickly” can be given as :

Sentence

Noun phrase verb phrase

Article adjective noun verb adverb
The hungry rabbit eats quickly

Language - The set of all properly constructed sentences that can be
produced using a grammar G is called the language of G and is denoted by
L (G)

Example 8.4: Let S = {Ramesh, Seema, drives, jogs; carelessly, rapidly,
frequetitly}
N = {sentence, noun, verbphase, verb, adverb} and let V = SN.
Let V0 = sentence and suppose that the relation  on V* is described by
sentence  noun verbphrase
noun  Ramesh
noun  Seema
verbphrase  verb adverb
verb  drives
verb  jogs
adverb  carelessly
adverb  rapidly
adverb  frequently

159

The set S contains all the allowed words in the language; N
consists of words that describe parts of sentences but that are not actually
contained in the language. Write the derivation of the sentence “Seema
drives rapidly.” Also draw the derivation tree.

Solution : To prove this, we consider the following sequence of strings in
V*
Sentence
noun verbphrase
Seema verbphrase
Seema verb adverb
Seema drives adverb
Seema drives rapidly.

Note: Derivation of the sentence is not unique. Another derivation of the
same sentence is given below.
sentence
noun verbphrase
noun verb adverb
noun verb rapidly
noun drives rapidly
Seema drives rapidly.

Derivation tree :

160

Example 8.5 : Let V = {v0, w, a, b, c} S = {a, b, c} and let  be the
relation on V* given by

1. v0  aw 2. w  bbw 3. w c

Consider the phrase structure grammar G = (V, s, v0, ).
(i) Derive the sentence ab6c. Also draw the derivation tree.
(ii) Derive the sentence ab4c. Also draw the derivation tree. [Nov-06]

Solution :
(i) To drive sentences in L(G), it is necessary to perform successive
substitutions, using (1), (2) and (3) until all symbols are eliminated other
than the terminal symbols a, b and c.
v0

aw
abbw
abbbbw
abbbbbbw
abbbbbbc
i.e. ab6c

The derivation tree for ab6c is shown below. It is not a binary tree :

Similarly we can draw derivation tree for ab4c.

Example 8.6 : Let V = {v0 w, a, b, c}, S = {a, b, c} and let  be the
relation on V* given by
1.vo  av0b 2. v0b  bw 3. abw  c

161

Let G = (V, S, v0, ) be the corresponding phase structure grammar.
Determine the form of allowable sentences in L,(G). [May-06, May-07]

Solution: We may continue to use (1) any number of times, but we must
eventually use production (2) to eliminate v0.

Repeated use of (1) will result in a string of the form anv0b
n; i.e.

there are equal number of a’s and b’s.

When (2) is repeatedly used, the result is a string of the form
strings of the form am (abw) bm with m  0

At this point the only production that can be used is (3).
ancbn n  0.
It cannot be expressed as trees.

Example 8.7
Determine whether the word cbab belongs to the language

generated by the grammar 0G (V,S, ,)    where V = [a, b, c, A, B, C,

S], T = [a, b, c], S is the starting symbol & the productions are

S AB

A Ca

B Ba

B Cb

B b

C cb

G b

 

 

 

 

 

 

 















Solution : S AB 
S Cab  by using A Ca 
S cbaB  by using C ab
S cbab by using B b

cbab belongs to the language generated by G. There are different
approaches to get the result.

8.5 CLASSIFICATION OF PHRASE STRUCTURE
GRAMMER

Let G = (V, S, v0, ) be a phrase structure grammar. Then we say that
G is

l . Type 0: if NO restrictions are placed on the productions of G.

162

2. Type 1: if for any production w1, w2, the length of w, is less than or
equal to the length of w2. (where length of a string is the number of
words in that string).

3. Type 2: if the left hand side of each production is a single,
nonterminal symbol and the right hand side consists of one or more
symbols.

4. Type 3: if the left hand side of each production is a single,
nonterminal symbol and the right hand side consists of one or more
symbols, including at most one nonterminal symbol, which must be at
the extreme right of the string.

Note: In each of the preceeding types, we permit the inclusion of the
trivial production v0  , where  represents the empty string.

It follows from the definition that each type of grammar is a
special case of the type preceding it.

In the above illustrations example-4 is a type-2 grammar, example-
5 is a type-3 grammar and example-4 is a type-0 grammar.

Grammar of type0 or 1 are quite difficult to study and little is
known about them.

Context-free grammar: Type-2 grammers are sometimes called context-
free grammar, since the symbols on the left of the productions are
substituted for wherever they occur. A language generated by a type 2
grammar is called a context - Free language. When there is a production of

the form 1 2aw b aw b, the grammar is called type 1 or context -

sensitive because w1 can be replaced by w2 only when it is surrounded by
the strings a & b.

Regular Grammar : Type-3 grammers are also called regular grammar.

The process we have considered in this section mainly dividing a
sentence within a grammar has a converse process. The converse process
involves taking a sentence and verifying that it is syntactically correct in
some grammar G by constructing a derivation tree that will produce it.
This process is called parsing the sentences; and the resulting derivation
tree is often called the parse tree of the sentence. Parsing is of fundamental
importance for compilers and other forms of language translation. A
sentence in one language is parsed to show its structure, and a tree is
constructed. The tree is then searched and, at each step, corresponding
sentences are generated in another language. In this way a C++ program,
for example, is compiled into a machine language program.

163

8.6 REPRESENTATION OF SPECIAL GRAMMARS
AND LANGUAGES :

There is another notation that is sometimes used to specify a type 2
grammar, called Backus - Naur Form (BNF), after John Backus, who
invented it and Peter Naur who refined it for use in the specification of the
programming language ALGOL. The Backus-Naur Form is used to
specify the syntactic rules of many computer languages, including Java.

We know that the productions in type - 2 grammar have a single
nonterminal symbol as their left-hand side. Instead of listing all the
productions separately, we can combine all those with the same non
terminal symbol on the left-hand side into one statement. Instead of using
the symbol  in a production we use the symbol = we enclose all
nonterminal symbols in brackets, <>, and we list all the right-hand sides of
productions in the same statement, separating them by bars. For example
the production.

A Aa, A a      and A AB can be combined into A

A a a A B    .

Example 8.8 :
In BNF notation, the productions of example 4 appear as follows :

sentence noun verb phrase

noun Ramesh / Seema

verb phrase verb adverb

verb drives / Jogs

adverb carelessly / rapidly / frequently

  

  

  

  

    

Note that the left-hand side of a production may also appear in one
of the strings on the right-hand side.

Thus in the second line of Example 8 w appears on both sides.

When this happens, we say that the corresponding production w bbw 
is recursive.

If a recursive production has w as left-hand side, we will say that
the production is normal if w appears only one on the right-hand side and
is the rightmost symbol. The recursive production w bbw  is normal.

164

Example 8.9 :
Let V = {v0, w, a, b, c} S = {a, b, c} and let  be the relation on V*
given by

1. v0  aw. 2. w bbw 3. w c
Consider the phase structure grammar G = (V, S, v0, ).
Write the production rules using BNF notations.

Solution: <v0> :: = a < w >
<w> :: = bb < w > | c

Example 8.10 : BNF notation is often used to specify actual programming
languages. PASCAL and many other languages had their grammars given
in BNF initially. In this example we consider a small subset of PASCAL’s
grammar. This subset describes the syntax of decimal numbers and can be
viewed as a mini-grammar whose corresponding language consists
precisely of all properly formed decimal numbers.

Let S = {0, l, 2, 3, 4, 5, 6, 7, 8, 9, .}
Let V be the union of S with the set
N = {decimal-number, decimal-fraction, unsigned-integer, digit}

Let G be a grammar with symbol sets V and S, with starting symbol
“decimal-number” and with productions given in BNF forms as follows.

1. < decimal-number > :: =

< unsigned-integer >|< decimal-fraction >|< unsigned-integer >

< decimal-fraction >

2. < decimal-fraction > :: - < unsigned-integer >

3. < unsigned-integer > :: = < digit > | < digit > < unsigned-integer >
4. < digit > :: = 0|1|2|3|4|5|6|7|8|9

Following derivation tree, in this grammar, shows the decimal
number 23.14.

Note that the BNF statement numberd 3 is recursive, i.e. the
production.

“unsigned integer  digit unsigned integer” is recursive and also normal.

165

Example 8.11

As in example 9, we give a grammar that specifies a piece of
several actual programming languages. In these languages, an identifier (a
name for a variable, function, subroutine and so on) must be composed of
letters and digits and must begin with a letter. The following grammar,
with productions given in BNF, has precisely these identifiers as its
language.

G = (V, S, identifier, )
N = {identifier, remaining, digit, letter}
S = {a, b, …..,z, 0, l, 2, …..,9} .
V = NS

1. <identifier>:: = <letter> | <letter> <remaining>

2. <remaining>::.=.<letter>|<digit>|<letter><remaining>|<digit>
<remaining>

3. <letter> :: = a | b | c |…|z

4. <digit>:: = 0|1|2|3|4|S|6|7|8|9

Again we see that the production “remaining  letter remaining”
and “remaining  digit remaining” in BNF statement 2 are recursive &
normal.

8.6.2 Syntax Diagram: A second alternative method for displaying the
production in some type-2 grammars is the syntax diagram.

Example 8.12 : Draw syntax diagrams representing following BNF
statements.

(i) BNF statement that involves just a single production, such as
<w>:: = < w1> <w2> <w3> will result in the diagram shown in

Figure (i)

166

(ii) If Terminal symbols circles or ellipse, syntax diagram is shown in
Figure (ii)

<w>:: = <w1> <w2> | <w1> a | bc<w2>

(iii)Normal recursive production.
<w>:: = ab<w>
The syntax diagram for this production is shown in Figure (iii).

(iv) w ab ab w

The syntax diagram for this production is shown in figure (iv).

Solution :

(i)

(ii)

(iii)

(iv)

Example 8.13 : For the grammar specified below describe precisely the
language, L(G), produced. Also give the BNF and the corresponding
syntax diagram for the productions of the grammar. [May-03, May-05]

G = (v,S,v0, )
V={v0,a,b), S={a,b)

 : v0  aav0

v0 a
v0,  b

Solution: (i) L(G)
= {a2n+1, n0}  {a2nb, n0}

(ii) BNF
<v0>:: =. aa<v0>~ | a | b

167

(iii) Syntax diagram

Example 8.14 : For the grammar specified below describe precisely the
language, L(G), produced. Also give the BNF and corresponding syntax
diagram for the productions of the grammar.

G = (v,S,v0, )
V = (v0, v1, x, y, z), S = {x, y, z}
: v0  xv0

v0  yv1,
v1  yv1,
v1  z

Solution: (i) L(G)
xn yn z, 0, 1m n  ,

(ii) BNF

0 0 1V V y V   :: = x 

1V z   1:: = y V 

(iii) Syntax diagram

8.7 REGULAR GRAMMARS AND REGULAR
EXPRESSION :

Theorem-1: Let S be a finite set, and L  S*. Then L is a regular set if
and only if L = L(G) for some regular grammar G = (V, S, v0, )

Theorem-1 tells us that the language L(G) of a regular grammar G must
be the set corresponding to some regular expression over S, but it does not
tell us how to find such a regular expression

168

8.8 FINITE STATE MACHINES :

Many kinds of machines, including components in computers, can
be modeled using a structure called a finite-state machine. Several types of
finite-state machines are commonly used in models. All these versions of
finite-state machines include a finite set of states, with a designated
starting state, an input alphabet and a transition function that assigns a
next state to every state and input pair. Finite-state machines are used
extensively in applications in computer science and data networking for
example, finite - state machines are the basis for programs for spell
checking, grammar checking, indexing or searching text, recognizing
speech, transforming text using markup language such as HTML and
network protocols that specify how computers communicate.

Suppose that we have a finite set S ={s0,sl, ... ,Sn] , a finite set I,
and for each xI, a function fx:SS. Let F ={fx,/xI}. The triplet (S,I,F)
is called a finite state machine, S is called the state set of the machine and
the elements of S are called states. The set I is called the input set of the
machine. For any input xI, the function fx describes the effect that this
input has on the states of the machine and is called a state transition
function. Thus, if the machine is in state si. and input x occurs, the next
state of machine will be fx(si).

Since the next state fx(si) is uniquely determined by the pair (si, x)
there is a function F:SXIS given F(si, x) = fx(si)

The individual function, fx can all be recovered from a knowledge of F.

Example 8.15 : Let S={s0, s1} and I = {0, 1}. Define f0 and f1 as follows :
f0(s0) = s0, f0(s1) = s1, f1(s0) = s1 f1(s1) = s0

This finite state machine has two states s0s1, and accept two
possible inputs 0 and 1. Give transition table. Also draw diagraph of the
finite state machine. [Nov-06]

Solution : We can summarize this machine as follows :

0 1
s0 s0 s1

s1 s1 s0

(State Transition Table) This devise is often called as T flip-flop

169

Example 8.16 : Consider the state transition table shown below

a b
s0 s0 s1

s1 s2 s0

s2 s1 s2

Draw digraph of the machine

Solution :

Example 8.17 : Consider the finite state machine M whose transition table
is shown below

a b c
s0 s0 s0 s0

s1 s2 s3 s2

s2 s1 s0 s3

s3 s3 s2 s3

Draw digraph of the machine

Solution :

8.9 MOORE MACHINE (RECOGNITION MACHINE) :

Many different kinds of finite-state machines have been developed
to model computing machines. There is important type of finite-state
machine with output, where the output is determined only by the state.
This type of finite state machine is known as a Moor Machine, because
E.F. moore introduced this type of machine in 1956.

It is defined as a sequence (S, I. F. s0, T) where (S, I, F) constitute
a finite state machine, s0  S and T  S. The State s0 is called the starting
state of M, and it will be used to represent the condition of the machine
before it receives any input. The set T is called the set of acceptance state
of M. These states will be used in language recognition.

170

When the diagram of Moore machine is drawn, the acceptance
states are indicated with two cocentric circles, instead of one. No special
notation will be used on these diagraphs for the starting state, but unless
otherwise specified, this state will be named so.

Example 8.18 : Let M be Moore machine (S, I. F, s0, T) where (S, I, F) is
the finite-state machine of figure in example 4 and T = {s1, s3}. Show the
digraph of M.

Solution : The diagraph of M is as follows :

Example 8.19 : Draw the diagraph of the machine whose state transition
table is shown. Remember to label the edges with the appropriate inputs.
M = (S, I, F, s0, F) where S ={s0, s1, s2, s3}, I ={0, 1} and transition
function is given in the table. [May-05]

State Input
0 1

s0 s0 s1

s1 s0 s2

s2 s0 s0

s3 s2 s1

Solution : The state transition digraph is shown below.

Example 8.20 : Draw the state transition diagram for the following
S = {s0, s1, s2, s3), I = {a, b; c}. [Dec-02, May-07]

a b c
s0 s0 s0 s0

s1 s2 s3 s2

s2 s1 s0 s3

s3 s3 s2 s3

171

Solution: The state transition digraph is shown below.

Example 8.21 : Draw the diagraph of the machine whose state transition
table is shown. Remember to label the edges with the appropriate inputs.

[Dec-04]

a b
s0 s1 s0

s1 s2 s0

s2 s2 s0

Solution : The state transition digraph is shown below.

Example 8.22 : Draw the diagraph of the machine whose state transition
table is shown: [Oct-03]

A B
s0 s1 s0

s1 s2 s0

s2 s2 s0

Solution: The state transition digraph is shown below.

Example 8.23 : Draw the diagraph of the machine whose state transition
table is shown. Remember to label the edges with the corresponding
inputs.

172

M = (S, I, F),where S = {s0, s1, s2, s3}, I ={0, 1} and the transition
function is given below in table

State Input
0 1

s0 s0 s1

s1 s0 s2

s2 s0 s0

s3 s2 s1

Solution : The state transition digraph is shown below.

Example 8.24 : Construct the state transition table of the finite state
machine whose diagraph is shown below.

Solution : The state transition digraph is shown below.

State Input
0 1

S0 S1 S0

S1 S1 S2

S2 S3 S2

S3 S3 S4

S4 S4 S2

173

Example 8.25 : Construct the transition table of the finite state machine
whose diagraph is. [Dec.-04, Nov-06]

Solution : State transition table of the given machine is shown below

State Input
A B C

s0 s0 s1 s2

s1 s2 s1 s3

s2 s3 s3 s1

s3 s3 s3 s2

Example 8.26 : Construct the state transition table of the finite state
machine whose diagraph is shown.. [Oct.-03, May-06]

Solution : State transition table of the given machine is shown below.

State Input
0 1

S0 S0 S1

S1 S2 S1

S2 S2 S3

S3 S3 S3

174

Example 8.27: Construct the state transition table of the finite state
machine whose diagraph is shown below. [Apr-04]

Solution: State transition table of the given machine is shown below.

State Input
F T

S0 S0 S1

S1 S1 S1

S2 S2 S1

Example 8.28: Let the state transition table for a finite state machine be
[Dec-02, Nov-05,May 06, May-07]

State Input
0 1

S0 S0 S1

S1 S1 S2

S2 S2 S3

S3 S3 S0

List values of the transition function fw for (i) w = 01001, (ii) w = 11100.

Solution: (i) w = 01001

0 1 0 0 1
S0 S0 S1 S1 S1 S2 fw(S0) = S2

0 1 0 0 1
S1 S1 S2 S2 S2 S3 fw(S1) = S3

0 1 0 0 1
S2 S2 S3 S3 S3 S0 fw(S2) = S0

0 1 0 0 1
S3 S3 S0 S0 S0 S1 fw(S3) = S1

175

(ii) w=1 1100

1 1 1 0 0
S0 S1 S2 S3 S3 S3 fw(S0) = S3

1 1 1 0 0
S1 S2 S3 S0 S0 S0 fw(S1) = S0

1 1 1 0 0
S2 S3 S0 S1 S1 S1 fw(S2) = S1

1 1 1 0 0
S3 S0 S1 S2 S2 S2 fw(S3) = S2

Example 8.29: S={0, 1, 2, 3, ..., 9}

N={<deo-num>,<dec-frac>,<unsigned int>,<digit>}

<deo-num>::=<unsigned int>/<dec-frac>/<unsigned int><dec-frac>

<dec-num>::=<unsigned int>

<unsigned int>::=<digit>/<digit><unsigned int>

<digit>::0/l/2/..../9.

Give derivation tree and syntax diagram to represent decimal numbers
using the above grammar. [Dec-02]

Example 8.30: Consider a Moore machine (S,I,F,s0,T) where (S,I,F) is a
finite state machine given by [Apr-04]

a b c
S0 S0 S0 S0

S1 S2 S3 S2

S2 S1 S0 S3

S3 S3 S2 S3

And T={s1,s3}. Draw the digraph of the Moore machine.

Solution: The digraph of the given Moore machine is shown below.

176

Example 8.31 : Define finite state automaton. Construct the state diagram
for the finite-state automaton M = (S,I,s0,F) where S = {s0, s1, s2, s3};
I = {0,1}, F = {s0, s3} and the transition function f is given in the table.

[May-03]

f
State

Input
0 1

S0 S0 S1

S1 S0 S2

S2 S0 S0

S3 S2 S1

Solution: The state diagram for the finite state automaton is shown below.

8.10 UNIT END EXERCISE :

11) Construct a finite state machine that gives a 1 as its output bit if
and only if the last three bits received are all 1’s. [Oct-03]

12) Let M(S,I,F) be a finite state machine. Define a relation R on I as
follows. [Oct-03]
x, Rx2 if and only if fx1 (s)=f,x2(s) for every s  S.
Show that R is an equivalence relation on I

8.11 REFERENCES :

1) Let A = [+, ×, a, b] show that the following expressions are regular
over A.

i)    *
a b ab a b a    

ii)  *a b a b  

iii)  
*

* *a b b 

2) Let A = [a, b, c]. Give the regular set corresponding to the regular

expression given i)   *a b cb ii)  *a bb c

177

3) Let S = [0,1]. Give the regular expression corresponding to the
regular set given

i) [00, 010, 0110, 011110, ---]
ii) [0, 001, 000, 00001, 00000, 0000001, --]

4) Draw the diagraphs of the machines whose state transition table is
shown below :

a) State Input b) 0 1 2

F T s0 s0 s2 s1

s0 s0 s1 s1 s1 s3 s2

s1 s2 s1 s2 s2 s1 s3

s2 s0 s2 s3 s3 s3 s2

5) Let I = [0, 1] and S = [a, b]. construct all possible state transition
tables of finite - state machines that have S as state set and I as input set.

6) Let a be the grammar with vocabulary V = [S, A, a, b], T = [a, b],

starting symbol s, Productions  P S aA,S b, A aa          . What is

L(a), the language of this grammar?

7) Give a phrase - structure grammar that generates the set
n n0 1 n 0,1,2   

 

8) Give the BN form for the production of signed integers in decimal
notation. (A signed integer is a nonnegative integer preceded by a plus
sign or minus sign).

9) Let G be a grammar with V = [a, b, c, s], T = [a, b, c] starting
symbol S and production S abs,S bcs,S bbs,s a          and

s cb . Construct derivation trees for i) bcbba ii) bbbcbba iii)
bcabbbbbcb.

10) Find a phrase - structure grammar for each of these languages -

a) The set consisting of the bit strings 0, 1 & 11.
b) The set of bit strings containing only 1s.
c) The set of bit strings that start with 0 and end with 1.
d) The set of bit strings that consist of a 0 followed by an even

number of 1s.





