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1.0 OBJECTIVES

After going through this unit you will have knowledge :

e Decima number system, binary number system, octal number system
and hexadecimal number system.

e Conversion of numbers from one system to other system.

e Binary arithmetic - addition, subtraction, multiplication and division.

1.1 INTRODUCTION

This unit mainly deals with the representation of various number
systems used in the computer system. The smallest piece of data
recognized and used by a computer is ‘bit’ or binary digit. The binary
system consists of two digits O and 1. In the system, ‘O’ can be
represented by electricity ‘off’ and ‘1’ by dectricity being ‘on’. All the
numbers, letters and special characters that are entered in a computer are
internally represented in binary numbers. The computer only understands
‘O and ‘1. It executes al operation using machine language which
consists of only ‘O’ and ‘1'. Hence it isimportant to understand and study
in detail the representation of binary numbers.

1.2 THE DECIMAL NUMBER SYSTEM

The number systems are based on an ordered set of number of
digits. The total number of digits used in a number system is caled ‘base’
or ‘radix’ of the number system. The decima number system used 10
digits- 0, 1, 2, ..... 9 and hence its base is 10. The base of binary number
system is 2, base of octal number system is 8 and hexadecimal system has
base 16. The decimal number system is the most popular system used not
only by scientists and engineers but also by the common man. It is a
positiona number system as the value of any number depends on the
position of digits.

e.g. Consider number 638.

Its representation is 638 = 600 + 30 + 8
i.e. 638, =6x10%+ 3x10" +8x10°

Starting from left most digit, 6 is in the hundreds position. It is
caled t he Most Significant Digit (MSD). 3isin the tens position. The last
digit 8isin the unit position and isthe least significant digit (LSD).

The example shows that the value of each position is a power of
base 10. The power can be either positive, negative or 0.



Power of 10 and its value:
1

10°=1 10°=2=1
1
10' =10 10t=¥%,=01
10° =100 102 = ¥, =0.01
10° =1000 103 = ¥, = 0.001
10* =10000 10* = 3500 = 0.0001
10° = 100000 10™° = ¥10000 = 0-00001

e.g. The number 3254.78 will be represented as
3254.78 = 3x10% + 2x10% +5x 10" + 4x10° + 7x10 L +8x10 2

1.3 BINARY NUMBER SYSTEM

1.3.1 What isbinary number system?

A computer stores numbers, letters and characters in a coded form
which is a series of string of Os and 1s. The binary number system
consists of only O and 1. The digits in binary system are called ‘bits’. A
group of 4 bits is caled nibble and a group of 8 bits is caled a byte. A
group of 16 hits is known as ‘word’ and a group of 32 bits is called a
‘double word’. This number system has base 2. Computers are designed to
handle only binary numbers because computer circuits have to handle only
two binary digits which simplifies the design of the circuits, reduces cost
and improves reliability.

In binary system, the value of each digit is based on 2 and
powers of 2.

1.3.2 Decimal to binary system conversion:
Step 1) Divide the number by 2, the remainder is either O or 1.
2) Place the remainder to the right of number.

3) Subsequently divide the partial quotient by 2 and again
place the remainder to the right of the partial quotient.

4) Repeat the stepstill we get the partial quotient O.

5) The binary number is equal to the remainders arranged
so that the first remainder isthe LSD and last remainder
isMSD.

i.e. in order from bottom to top.
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Example 1. Convert 65, into binary.

Successive Original Number & Remainders

dividers partial quotients
2 65 1
2 32 0
2 16 0
2 8 0
2 4 0
2 2 0 T
2 1 1

0— STOP
65,7 =1000001,
Example 2. Convert 78,, to binary.
Successive Original Number & Remainders

Dividers Partial quotients
2 78 0
2 39 1
2 19 1
2 9 1
2 4 0
2 2 0 T
2 1 1

0

. 78,9 =1001110,

1.3.3 Binary todecimal conversion :
To convert binary number to its equivalent decimal number,

multiply the extreme right digit by 20, the second digit from right by 24

the third digit from right by 22 and so on till we reach the left most di git.
Then add all these products. The sum is the decimal equivalent of the
binary number.

Example 1. Convert 1001110, to decima number.

1001110, =1x2°%+0x2° +0x 2% +1x 2% + x 22 +1x 21+ 0% 2°
=64+0+0+8+4+2+0

=18y
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Example 2 : Convert 110101, to decimal.
110101, =1x2°+1x2%+0x 2% +1x 2% + 0x 2! x1x 2°

=32+16+6+4+0+1
= 5310

1.3.4 Decimal to binary fraction conversion :

Step 1) Multiply the decimal fraction by 2.
2) After multiplication, if a number equal or greater than 1 is
obtained then place 1 on the right of the partial product. If the
product islessthan 1, place O to the right of the partia product.
3) The partial product obtained in step 2 is multiplied by 2. The
process is repeated till the partial product is O or the resulting
binary fraction is to the required places of binary point
4) The ones and zeroes in the order obtained are equal to the binary
fraction.
5) The order is from top to bottom.

Examplel: 0.625;5="7,

Successive Decimal fraction &

Multiplier Partial product
2 X 0.625 =125 1
2 X 0.25 =05 0 l
2 X 0.5 =1.0 1

-.0.625,, =0.101,

Example 2: 0.86,="?
2 | x 086 |=172 1
2 | x 072 |=144 1 l
2 | x 044 |=0.88 0
2 | x 088 |=176 1

..0.86;7 =0.1101,
Example 3: 50.710="

In the last two examples we have converted for only decimal
numbers. In this example we will convert for both 50 and .7 & then
combine them.

We should be careful while writing order for 50 (the order is from
top to bottom) and for .7 (the order is from bottom to top).



Successive | Original Number & | Remainders Successive Decimal Fraction &
Dividers Partial quotients Multiplier Partial Product
2 50 0 2x07=14 1
2 25 1 2x04=0.8 0
2 12 0 2x08=1.6 1
2 6 0 2x06=12 1
2 3 1
2 1 1
0
Therefore

50, = 110010,

. 50.7;0 =110010.1011,

1.3.5Binary to decimal fraction conversion :
To convert a binary fraction to decimal fraction multiply the first

bit after binary point by 271, the second by 272, third by 22 and so on.
Add all these productsto get the decimal equivalent.

Examplel. 0.1111, =7,
01111 =1x2 1 +1x 272 4+1x 23 +1x 27*

1 1 1 1
=Ix=+1Ix—+1Ix=+1x—
2Jr 4 8

16

=0.5+0.25+0.125+ 0.0625

—0.9375,

Example 2. 111011.101, = 2,

111011 =1x 2° +1x2* +1x 22 1 0x 2% +1x 2t +1x 2°
=32+164+8+04+2+1

=59

0.101=1x2 1+ 0x27% +1x 23

=¥+0+%
=05+0+0.125
=0.625

111011.101, = 59.625,

Check your progress.

1100000,

65,
26,9
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4) 154, =2, Ans. 10011010,

5) 1001010.1010001, = 2, Ans.  74.6328125,

6) 101001.1101, =%, Ans. 418125,

7) 678.67;0="2, Ans.  1010100110.1010,
8) 59.625,,="2, Ans.  111011.101,

1.4 OCTAL NUMBER SYSTEM

1.4.1 What isoctal number system?

Octal system was used to deal with the long strings of 1sand Osin
binary. It is a base 8 system using the digits 0, 1, 2, 3, 4, 5, 6 and 7. Thus
each digit of an octal number can have only valuesOto 7.

Thedigit position in an octal number have weights as follows-
g*g3g?g'g”. '8 28 3g
7

Octal point
The largest octal digitis 7. After 7, the next digit is taken to be 10.

Octal

0

1

2

3

4

5

6

7 7g+15 =10g
10
11
16
17 17 +15 =204
20
27 27g+15 =304
30

& soon

1.4.2 Decimal to Octal conversion:

Steps:
1) Divide the decimal number by 8.
2) Place the remainder to the right of original number.



3)

4)
5)

10

Subsequently divide the partia quotient by 8 and place the
remainder to the right of partial quotient.

Repeat the above stepstill we get partial quotient O.

The octa number is equa to the remainder arranged so that
first remainder is LSD and last remainder is MSD of the octal
number (i.e. from down to up)

Example 1. 1190 =75

Successive Original Number & Remainders
dividers partial quotients
8 119 7
8 14 6 T
8 1 1
0
11910 = 1678
253610 - ?8
Successive Original Number & Remainders
dividers partial quotients
8 2536 0
8 317 5 T
8 39 7
8 4 4
0

. 253610 = 4750g

1.4.3 Decimal to Octal fraction Conversion :

Steps:

1) Multiply the decimal fraction by 8.

2)  Writetheinteger to the right of the product i.e. if
0.6 x 8 = 4.8 then place 4 to the right of the product.

3) Thepartia product isagain multiplied by 8 and the
integer is placed to the right of the product.

4) Repeat the processtill the partial productsis seen or

till the required place of octal point.
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Example 1 0.9610 =75
0.96 x 8 7.68 7
0.68 x 8 5.44 5
0.44 x 8 3.52 3
0.52 x 8 4.16 4
0.16 x 8 1.28 1
0.28 x 8 2.24
0.9619 0.753415
2. 0.562510 = ?8
05625x8 = 4.5
05x8 = 4.0
5. 05625, = 0.445
3. 73.5210 = ?8
Successive | Original Reminders
dividers number &
partial
quotient
8 73 1
8 9 1
8 1 1
0
7310 = 1118
5. 07352 = 11141214

1.4.4 Octal Decimal Conversion :

To convert a whole octal number to its decimal equivalent, the
extreme right hand digit is multiplied by 8°, the second digit from right is
multiplied by 8', the third from right is multiplied by 82, and so on. Then
all their products are added to get the required decimal number.

8x0.52 =4.16
8x0.16 =1.28
8x0.28 =224
8x0.24 =192

T 0.5210=0.4121g

To convert octal fraction to decimal fraction-

Multiply first digit after octal point by 8*, second digit after octal
point by 87, third digit after octal point by 8% & so on. Add all their
products to get the required decimal fraction.

Example 1.

56g = ?10

56=5x8'+5x8°=40+6=46

568 = 4610

RPN R A



2)

3)

4)

12

642 = 6x8+4x8 +4x8
= 6x64+4x8+2
= 384+32+2 = 418
05638 = ?10
0563 = 5x8'+6x8%+3x83
5 6 3
= 4+
8 64 512
= 0.625+ 0.09375 + 0.0058 59375
= 0.724609375
0.5635 = 0.724609375;9
111.4121g = 20

111 =1x8+1x8' +1x8=64+8+1=73
=4x8'+1x8%+2x8%3+1x8*

0. 4121
4 1 2 1

= 4+ + -+
8 g g g

= 0.5+ 0.015625 + 0.00390625 + 0.00024414
= 0.519775399
111.41215 = 73.519775399

Check your progress:

1)
2)
3)
4)
5)
6)
7)

1.4.5

3645 = 210
728 = ?10
11910 = ?8

634.64062510 = 75

0.9610 = ?8
4548 = ?10
0-1358 = ?10

Octal to Binary Conversion

Ans:
Ans:
: 1675
Ans:
Ans:
. 30010
Ans:

Ans

Ans

24440
5810

1172.51g
0.753412¢

0.181640610

The conversion of octa to binary is done by converting each octal
digit to its 3-bit binary equivalent

Example 1 56
Successive Original Remainders Successive Original Remainders
Dividers Number & Dividers Number &
Partial Partial
guotients quotients
2 5 1 2 6 0
2 2 0 2 3 1
2 1 1 2 1
2 0 0
2
2
58 = 1012 68 = 1102

56g = 101110,
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OR

We can convert 565 to decima number and then convert the
decimal number to its binary equivalent.

Check : 565 =465, =101110,

Example2 0.216g= 2

Successive Original Remainders Successive | Original Remainders Successive Original Remainders
Dividers Number & Dividers Number & Dividers Number &
Partial Partial Partial
guotients quotients quotients
2 2 0 A 2 1 1 2 6 0
2 1 1 0 2 3 1
0 2 1
0
010 001 110

Noteif it islessthan 3 - bit add 0 in the |eft to make 3 bit.
0.216g = 0.010001110,

3) 576.128 = ?2

Successive Original Remainders Successive | Original Remainders Successive Original Remainders
Dividers Number & Dividers Number & Dividers Number &
Partial Partial Partial
guotients quotients quotients
2 5 1 2 7 1 2 6 0
2 2 0 A 2 3 1 2 3 1
2 1 1 2 1 1 2 1 1
0 0 0
101 111 110

576g =101111110;

0.12g
Successive | Original Remainders Successive | Original Remainders
Dividers Number Dividers Number
& Partial & Partial
quotients quotients
2 1 1 2 2 0
0 2 1 1
0
001 010

0.12¢ =0.001010,
576.12g =101111110.001010,
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1.4.6 Binary to Octal Conversion:
Steps:

1) Makeagroup of 3 bits, starting from binary point

2) For whole numbers make group of three from right to
left (from binary point)

3) For fractional part, move left to right from binary point.

4) In case of one or two bits |eft, add zeroes to make a
group of three.

5) Replace each group of 3 bits by equivalent octa
numbers.

Example 1 1101011, =%
1101011

001101 011 (Complete group of 3 bits by adding zeroes)

001 = Ox2%+0x2'+1x2® =0+0+1=1
101 = 1x22+0x2'+1x2® =4+0+1=5
011 = Ox2%+1x2'+1x2® =0+2+1=3

-.1101011, = 1535

2) 0010101, =%
0.010101

O0Xx2°+1x2'+0x2° =0+2+0=2
1x22+0x2'+1x2° =4+0+1=5

010
101

0.010101, = 0.25g

3) 1101.11101, =7
1101111 01
001 101111 010
Thiswill give 15.723 (check)

- 1101.11101, = 15.72

Check your progress:

1) 6375="2 Ans: 110011111,

2) 256g="7 Ans: 10101110,

3) 56.34g=" Ans: 101110.011100,
4) 1011.1011,="7% Ans: 13.54g

5) 0.1101,="7% Ans: 0.64s
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1.5 HEXADECIMAL NUMBER SYSTEM

15.1 What ishexadecimal number system?

Hexadecima number system is a system with base 16. Thusit isa
system which has 16 possible digit symbols. As we are familiar with only
10 digits - 0 to 9, the hexadecimal system uses letters A to F to represent
the remaining numbers 10 to 15.

Thusthe 16 digit symbols are
0,123,4,56,7,8,9A,B,C,D,Eand F.

Also four binary digits are grouped together to represent each digit
in hexadecima number system.

15.2 Decimal to Hexadecimal Conversion -

Steps-

1) Divide the number by 16

2) Place the remainder to the right of original number.

3) Subsequently divide the partial quotient by 16 and place the
remainder to the right of partial quotient.

4) Repeat the above stepstill we get quotient O
5) Then the hexadecimal number is equal to the remainders

arranged from the last remainder to the first remainder (ie.
down to up)

Examplel: 107610 = 216
Successive Dividers | Original Number & Partial quotients Remainders
16 10761 9
16 672 0
16 42 10
16 2 2
0
1076150 = 2 (10) 09
=2 A 09
2) 674710= 16
Successive Dividers | Original Number & Partial quotients Remainders
16 6747 11
16 421 5
16 26 10
16 1 1
0

674710 = 1 (10) 5 (11)

=1A 5815
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Decimal to hexadecimal fraction conversion-

Steps:

1) Multiply decimal fraction by 16

2) Write the integer to the right of product.

3) The partial product is again multiplied by 16 and integer is placed
to the right of product.

4) Repeat the process till partial product is seen or till the required
place of hexadecimal point.

Example 1 0.25610 = ?15

0.256 x 16 = 4.096
0.096 x 16 = 1.536
0.536 x 16 = 8.576
0.576 x 16 = 9.216

CIEIIRYES
«—

2) 9723610 = ?16

6] 97 | 1
6] 6 |6 T
0

9710 = 6146

0.236 x 16 =3.7/6 3
0.776 x16=12416 |12 l

0.416 x 16 = 6.656 6
0.656x16=10.49% |10

0.23640 = 0.3(12) 6 (10) = 0.3C6A 1
97.23610 = 61.3C6A 6

15.3 Hexadecimal to Decimal conversion-

1) To convert a whole hexadecimal number to its decimal
equivalent, the extreme right digit is multiplied by 16°, the second from
right by 16", the third digit from right by 16 and so on. Add all their
products to get the required decima number.

2) To convert hexadecimal fraction to decimal fraction, multiply
the first digit after hexadecimal point by 16, the second digit from point
by 16 and so on. Add all these products to get the equivalent decimal
number.

Example 1 1A5E6 = 710

1) 1A5E
1x 16> + A x 16+ 5x 16 + E x 16°
4096 + 10X 256 + 80 + 14 x 1
675010
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2)

>
jos}
\l
5

AXx16%+Bx 16 + 7 x 16°
10X 256+ 11X 16 + 7
2743,

3) 61.3C6A16 = ?10
6l= 6x16'+1x16°=96+1=97

3x161+Cx162+6x16°+A x16®
3 12 6 10
—+ + +
16 256 4096 65536
= 0.1875 + 0.0469 + 0.0015 + 0.0002
= 0.2361
. 61.3C6A s = 97.2361

0.3C6A

Check your progress:

1) 3A916= 10 AnNs. 9371¢

2) 755110 = 2?16 Ans. 1D7F5
3) 3370.7510 = 716 Ans. D2A.646
4) 0.394210 = 716 Ans. 0.64EA
5) 0.48:6 = 210 Ans. 0.281254¢

1.5.4 Hexadecimal to Binary conversion
The conversion from hexadecima to binary is performed by
converting each hexadecimal digit to its 4-bit binary equivalent.

Examplel. 4C3Fi=7

c=12 F=15
2] 4]0 2 ]12]0 2|3|1]al2|15]1
212]0 T 21 6|0 2|11 T 217 [1
2[1]1 21 3|1 0 2[31 4
0 2111 ] 2111
0 0
100 1100 11 1111
4 bit is (0100) (1100) 4 bit is (0011) (1112)

4C3F;6 = 0100110000111111,
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2) AB.CDle = ?2

A =10 B=11 C=12 D=13
2(10|0 2 1111 2112|0 2|113|1
2151 2 5|1 2,610 2,610
21210 212 1|0 2131 2131 T
21111 T 21111 T 2111 21111

0 0 0 0
(1010) (1011) (1100) (1101)

AB.CDs =10101011.11001101,

15,5 Binary to hexadecimal Conversion -
Group the binary bits into fours starting from binary point.
For whole number, make group of four form right to left

1)
2)

3)
4)

5)

from binary point.

For fractional part, make group of four from left to right

from binary point.

In case you are left with only one or two or three bits, add

Zero or zeroes at appropriate places.

Replace each group by equivalent hexadecimal numbers

(by multiplying by powers 22 to 2°)

Examplel: 1101001100, = ?45

1101001100

(0011) (0100) (1100)

0011 = OX22+0x22+1x2t+1x2°=

0100 = Ox22+1x22+0x2'+0x2°=

1100 = 1x22+1x22+0x2t+0x2°=
1101001100, =34Cyg

2) 110101.1111101, = 246

1101011111101

(0011) (0101) (1111)(1010)

0011 = Ox22+0x2%+1x2'+1x2°=

0101 = Ox22+1x22+0x2'+1x2°=

1111 = Ix22+1x22+1x2t+1x2°=

1010 = 1x22+0x22+1x2t+0x2°=

110101.1111101, = 35.FAs6

Check your progress:

1)
2)
3)
4)
5)
6)

F2E16 =2 Ans. 111100101110,
6BCis =7 Ans. 011010111100,
10110110111, =216  Ans. 5B716

1111110, = 246 AnNs. 7E;

0.0101011, = 2 Ans. 0.5B15
0.2D61s="? Ans. 0.111011010110,

2+1=3
4
12=C

3
5
15=F
10=A
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15.6 Hexadecimal to Octal numbers-
Steps-
1) First convert each digit in number to its binary equivalent
(by dividing by 2) and writeit in group of 4 bits.
2) Then make group of 3 bits each from right to left.
3) Again convert it into binary equivalent (by multiplying by
powers 2° to 2%

Octal to hexadecimal numbers-
Steps-
1) Convert each digit in binary equivaent (by dividing by 2)
and write in group of 3 bits each.
2) Then take group of 4 bits each from right to left.
3) Again convert it into binary equivaent (by multiplying by

powers 2° to 2%
Examplel: 3F2;5= 75
F =15
2131 21151 2l 270
21 1t 271 [2/2]1}
0 21 31 0
2 |1 1T
0
(0011) (1111) (0010)
001111110010
001 = 0x22+0x2t+1x26=1
111 = 1x22+1x2t+1x2°=7
110 = 1x2?+1x2'+0x2°=6
010 = Ox2?+1x2'+0x2°=2
(3F2)16 = 17628
2) 15278:?16
12]1]1] [2]5]1] [2]2]0 2|71
0 22012111‘2311
2111 0 1211
0 0
(001) (101) (010) (112)
001101010111
0011 = 0x22+0x2%+1x2'+1x2°=3
0101 = 0x22+1x22+0x2'+1x2°=5
0111 = Ox22+1x2%+1x2'+1x2°=7

1527g = 35716
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3) 47.438 = ?16

2140 [2]7[1] [2]4]o] [2]3]1
2[210] |2]3|1] |2]2]0] |2]|1]1
2(101] [2]1[1] [2]1]1 0

0 0 0

(100) (111) (100) (011)
100111.100011
100111100011

0010 0111.1000 1100

0010 = OXx22+0x2%+1x2'+0x2°=2
0111 = OX2+1x2%+1x2'+1x2P=4+2+1=7
1000 = 1x22+0x22+0x2'+0x2°=8
1100 = Ix2+1x22+0x2'+0x2°=8+4=12=C

47.438 = 27.8C16
Remember : When we are converting

Hexadecimal to octal number first convert each digit in group of 4 bits
then make group of 3 bits from right to left.

But when we are converting octal to Hexadecima number first convert
each digit in group of 36 bits then take group of 4 bits each from right to
left.

Check your prograss -

1) 5A316= 7 Ans: 2643
2) 47535 = 715 Ans: 9EBig

1.6 BINARY ARITHMETIC

1.6.1 Binary Addition:

Rules: 0+0=0
0+1=1
1+0=1
1+1=0 i.e. takeit asOwitha
carry of 1.

Examplel Add 110101 and 101111

110101
+ 101111
1100000




2) 10 110
+ 1101
100011

1.6.2 Binary Subtraction

Rules:

Orr Fr O
1

1

RPORFrO
Mmoo n
PP, OO

* k%

110101
+ 101111
000110

eg. 1)

* columns are borrowed from

**

3) 110110
- 10011
10001.1

5) 1000101
- 101100
11001

1.6.3 Multiplication:

0x0=0
0x1=0
1x0=0
1x1=1

Rules:

10110

X 1101
10110
00000x

+ 10110xx
10110xxx

100011110

eg. 1)

3 1111
x 111
1111

1111x

+ 1111xx

1101001
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3) 1010
1000
+ 0110
0111
11111
borrow 1
* *
2) 10110
- 1101
1001
* k%%
4) 1101110
- 10111
1010111
6) 110011
- 10110
11101
2) 111
X 101
111
000x
+ 111xx
100011
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Note: Check multiplication by checking their equivalent decimal
multiplication.

1.6.4 Division:
Division for binary numbers can be carried out by following same
rules as those of decima system.

eg. 1) Divide 100011 by 101

101i100011(111

- 101
0111
-101

0101
- 101

0
Ans: 111

2) Divide 11110 by 110

110)11110 (101

- 110
11
-0
110
- 110
0

Ans: 101

3) 1110)1000110 (101

- 1110
00111
-0
1110
- 1110
0
Ans. 101

Check your progress:

1) 1100 + 1011 Ans: 10111
2) 11101 + 10011 Ans: 110000
3) 1100+ 1010 + 1101 + 0111 Ans. 101010

4) 1110-1011 Ans: 0011
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5) 11110011 - 1110001

6) 11010x 1011

7) 0010111 x 0000011

8) 00101010 - 00000110
9) 00100101 - 00010001

Ans:
Ans:
Ans:
Ans:
Ans:

10000010
100011110
1000101
111

10100

1.7 SUMMARY

Computer uses only binary digitsO and I. A binary digitiscaled a
bit. There are two states in a bit - O and 1. In this unit we have seen four
number systems. Decimal system has base 10, binary system - base 2,
octal system - base 8 and hexadecimal system has base 16. Three binary
digits correspond to one octal digit and four binary digits translate into one
hexadecimal digit. The following table shows the four systems.

Binary Octal Hexadecimal Decimal
0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 10 8 8
1001 11 9 9
1010 12 A 10
1011 13 B 11
1100 14 C 12
1101 15 D 13
1110 16 E 14
1111 17 F 15

In binary arithmetic, addition is simply the bitwise XOR operation
with cary and multiplication is simply logica AND operation.
Subtraction is equivaent to adding a negative number and division is

equivalent to multiplying by the inverse.

1.8 UNIT END EXERCISES

1) (76),,=(?),

2) 11000.0011, = ?,, Ans: 24.1875

Ans: (1001100),



3)

4)

5)

6)

7)

8)
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Convert the following binary numbers into decimal numbers.

i) 11001.0101 Ans:
i) 1101.11 Ans:
iii) 1001.101 Ans:
iv) 1011001 Ans:
v) 0.1011 Ans:
vi) 0.0101 Ans:
Convert decimal into binary numbers.
i) 97 Ans:
i) 154 Ans:
iii) 17.71875 Ans:
iv) 74.635 Ans:
v) 43 Ans:
Convert octa to decima number

i) 5264 Ans:
i) 642 Ans:
iii) 704 Ans:
iv) 134 Ans:
v) 1075.6256 Ans:
Convert decimal to octal numbers -

i) 810 Ans:
i) 2749 Ans:
i) 9 Ans:
iv) 3965 Ans:
v) 460 Ans:
vi) 201 Ans:
Convert octa to binary numbers -

i) 435 Ans:
i) 13.54 Ans:
i) 134 Ans:
iv) 576.216 Ans:
v) 56.34 Ans:
Convert binary to octal numbers -

i) 110111101 Ans:
i) 11000110 Ans:
iii) 1111000 Ans:
iv) 1101.11101 Ans:

v) 0.1101 Ans:

25.3125
13.75
9.625
89
0.6875
0.3125

1100001
10011010
10001.1011
1001010.1010001
101011

2740

418

452

92
573.79248

10

5275
11
7575
714
311

100011101
1011.1011
1011100

101111110.010001110

101110.011100

675
306
170
15.72
0.64
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9) Convert hexadecimal to decimal numbers -

i) 1F954 Ans. 8085,
i) 475C4q Ans. 18268,
iii) 0.D2Fq Ans.  0.82397,,
iv) D6C1 Ans. 54977,
10) Convert decimal to hexadecimal numbers -
i) 3370 Ans. D2A
ii) 70 Ans. 46
iii) 0.62 Ans.  0.9EB851
iv) 10761 Ans.  2A09
V) 6747 Ans. 1A5B
11) Convert hexadecimal to binary numbers -
i) 59Cy4 Ans. 010110011100,
i) 6D.3A Ans. 1101101.00111010,
iii) 6BC Ans. 11010111100,
iv) 43CF Ans:  100001111001111,
12) Convert binary to hexadecimal numbers -
i) 11011110, Ans. DEq
if) 110000110, Ans. 18644
iif) 0.011011, Ans.  0.6Cyq
13) Convert octal to hexadecimal numbers -
i) 46.57 Ans.  26.BC
i) 134 Ans. 5C
14) Convert hexadecimal to octal numbers -
i) 4B Ans. 113
ii) 5B.3A Ans. 133.164
15) Perform the following Binary Arithmetic -
i) 10101 + 1110 Ans. 100011
i) 101+ 1010 Ans. 1111
iii) 1101 + 1111 Ans. 11100
iv) 1011, —0110, Ans: 0101
v) 11011001 Ans. approx 1.0111

vi) 1101, x1010 Ans. 11111010
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20 OBJECTIVES:

After going through this unit, you will be ableto :

e Define statement & logical operations.

e Define & to usethelaws of Logic.

e Describethelogica equivalence and implications.
e Define arguments & valid arguments.

e Test thevaidity of argument using rules of logic.
e Give proof by truth tables.

e Give proof by mathematical Induction.

21 INTRODUCTION :

Mathematics is an exact science. Every statement in Mathematics
must be precise. Also there can’t be Mathematics without proofs and each
proof needs proper reasoning. Proper reasoning involves logic. The
dictionary meaning of ‘Logic’ is the science of reasoning. The rules of
logic gives precise meaning to mathematic statements. These rules are
used to distinguished between valid & invalid mathematical arguments.
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In addition to its importance in mathematical reasoning, logic has
numerous applications in computer science to verify the correctness of
programs & to prove the theorems in natural & physical sciences to draw
conclusion from experiments, in social sciences & in our daily lives to
solve amultitude of problems.

The area of logic that dedls with propositions is called the
propositional calculus or propositional logic. The mathematica approach
to logic was first discussed by British mathematician George Boole; hence
the mathematical logic is aso called as Boolean logic.

In this chapter we will discuss afew basic ideas.

2.2 PROPOSITIONS (OR STATEMENTYS)

A proposition (or a statement) is a declarative sentence that is
either true or false, but not both.

A proposition (or a statement) is a declarative sentence which is
either true or false but not both.

Imperative, exclamatory, interrogative or open statements are not
statements in logic. Mathematical identities are considered to be
statements.

Example 1 : For Example consider, the following sentences.
i)  Theearthisround.

i) 4+3=7

iii) Londonisin Denmark

iv) Do your homework

v)  Where are you going?

vi) 2+4=8

vii) 15<4

viii) Thesquare of 4is18.
iX) x+1=2

X)  May God Bless you!

All of them are propositions except iv), v), iX) & X) sentencesi), ii)
aretrue, where asiii), iv), vii) & viii) are false.

Sentence iv) is command hence not proposition. Is a question so
not a statement. ix) Is a declarative sentence but not a statement, since it
is true or false depending on the value of x. X) is a exclamatory sentence
and so it is not statement.
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Mathematical identities are considered to be statements.

Statements which are imperative, exclamatory, interrogative or
open are not statementsin logic.

Compound statements:

Many propositions are composites that is, composed of
subpropositions and various connectives discussed subsequently. Such
composite propositions are called compound propositions.

A proposition is said to be primitive if it can not be broken down
into simpler propositions, that is, if it is not composite.

Example 2 : Consider, for example following sentences.
(& “Thesumisshiningtoday anditis cold”
(b) *“Jduileeisinteligent or studies every night.”

Also the propositionsin Example 1 are primitive propositions.

23 LOGICAL OPERATIONS OR LOGICAL
CONNECTIVES:

The phrases or words which combine simple statements are called
logical connectives.

For example, ‘and’, ‘or’, ‘note’, ‘if...... then’, ‘either....... or etc....

In the following table we list some possible connectives, their
symbols & the nature of the compound statement formed by them.

Sr. No. Connective Symbol Compound statement

1 AND A Conjuction

2 OR v Digjunction

3 NOT — Negation

4 If........ then —> Conditional or
implication

5 If and only if (iff) <> Biconditional or
equivalence

Now we shall study each of basic logical connectivesin details.
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Basic Logical Connectives:
2.3.1 Conjunction (AND) :
If two statements are combined by the word “and” to form a
compound proposition (statement) is called the conjunction of the original

proposition.

Symbolicaly, if P & Q are two simple statements, then * PAQ’ denotes
the conjunction of Pand Q and isread as ‘P and Q.

Since, PAQ is a proposition it has a truth value and this truth value
depends only on the truth values of P and Q.

Specifically, if P & Q are true then PAQ is true; otherwise PAQ is
fase.

Thetruth table for conjunction is as follows.

PAQ

m m = =] 7T
m 4 mm 4]0
o e I I g

Example 3:

Let P: Monsoon isvery good this year.
Q: Theriversarerising.

then
P A Q: Monsoon is very good this year and rivers are rising.

2.3.2 Digunction (OR) :

Any two statements can be connected by the word ‘or to form a
compound statement called disunction.

Symbolically, if P and Q are two simple statements, then Pv Q denotes
thedisunctionof Pand Qandreadas 'P or Q'.

The truth value of Pv Q depends only on the truth values of P and Q.
specifically if P and Q are false then Pv Q is false otherwise PvQ is
true.



31

Thetruth table for digunction is as follows.

= Q PvQ
T T T
T F T
F T T
F F F

Example 4 :

P: Parisisin France

Q:2+3=6

then Pv Q: Parisisin Franceor 2 + 3=6.
Here, PvQ isTruesincePistrue & QisFalse.

Thus, the disunction Pv Q isfase only when P and Q are both false.
2.3.3 Negation (NOT)

Given any proposition P, another proposition, called negation of P,
can be formed by writing “It is not the case that........ or. “ltis false

that....... " before P or, if possible, by inserting in P the word “not”.

Symbolically —P or ~P read “not P’ denotes the negation of P.
the truth value of — P depends on the truth value of P.

If Pistruethen — P isfaseandif Pisfalsethen —P istrue. The
truth table for Negation is as follows:

P —P
F

Example5:

Let P: 6isafactor of 12.

Then Q= —P: 4isnot afactor of 12.
HerePistrue & — P isfase

2.3.4 Conditional or Implication : (If...... then)

If two statements are combined by using the logical connective
‘if....then’ then the resulting statement is called a conditional statement.
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If P and Q are two statements forming the implication “if P then
Q’ then we denotes thisimplication P— Q.
Intheimplication P— Q,
Pis called antecedent or hypothesis
Q iscalled consequent or conclusion.

The statement P— Q istrue in al cases except when P istrue and Q is
fase.

The truth table for implication is as follows.

P Q P—Q
T T T
T F F
F T T
F F T

Since conditional statement play an essential role in mathematical
reasoning a variety of terminology is used to express P — Q.

i) IfPthenQ

ii) PimpliesQ

i) Ponlyif Q

iv) QIifP

v) Pissufficient condition for Q
vi) QwhenP

vii) Qisnecessary for P
viii) Q followsfrom P
ix) ifP,Q

X) Qunless —P

Converse, Inverse and Contrapositive of a conditional statement : We
can form some new conditional statements starting with a conditional
statements related conditiona statements that occur so often that they have
specia names — converse, contrapositive & Inverse. Starting with a
conditional statement P— Q that occur so often that they have specia

names.,

1. Converse : If P—Q is an implication then Q — P is called the
converseof P— Q.

2. Contrapositive : If P—Q is an implication then the implication
—Q— —Piscaledit' s contrapositive.
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3. Inverse : If P—Q is an implication then —P— —Q is cdled its
inverse.

Example6:

Let P: You are good in Mathematics.
Q:YouaregoodinLogic.

Then, P— Q: If you are good in Mathematics then you are good in Logic.
1) Converse: (Q— P)
If you are good in Logic then you are good in Mathematics.

2) Contrapositive: -Q— —P
If you are not good in Logic then you are not good in Mathematics.

3) Inverse: (-P— —Q)
If you are not good in Mathematics then you are not good in Logic.

2.3.5 Biconditional Statement : Let P and Q be propositions. The
biconditional statement P <> Q is the proposition "P if and only if Q".

The biconditional statement is true when P and Q have same truth values
and is false otherwise.

Biconditiona statements are also called bi-implications. It is also
read as p is hecessary and sufficient condition for Q.

The truth table for biconditional statement is as follows.

P Q P Q
T T T
T F F
F T F
F F T

Example 7 : Let P: You can take the flight.
Q: You buy aticket.
Then P« Q isthe statement.

“You can take the flight iff you buy aticket”.

Precedence of Logical Operators:

We can construct compound propositions using the negation
operator and the logical operators defined so far. We will generally use
parentheses to specify the order in which logical operators in a compound
proposition are to be applied. In order to avoid an excessive number of
parantheses.



We sometimes adopt an order of precedence for the logica
connectives. The following table displays the precedence levels of the

logical operators.

34

Operator Precedence
B 1
A 2
A 3
- 4
> 5

24 LOGICAL EQUIVALANCE :

Compound propositions that have the same truth values in al

possible cases are called logically equivalent.

Definition :

Q arelogically equivalent.

Some equivalance are useful for deducing other equivalance. The

The compound propositions P and Q are called logically
equivalent if P«> Qisatautology. The notation P=Q denotes that P and

following table shows some important equival ance.

24.1 Logical Identitiesor Lawsof Logic:

Name Equivalance

1. Identity Laws PAT=P
PVvF=P

2. Domination Laws PvT=T
PAF=F

3. Double Negation —~(=P)=P

4. ldempotent Laws PvP=P
PAP=P

5. Commutative Laws PvQ=QvP
PAQ=QAP

6. Associative Laws (PvQ)vR=Pv(QVR)
(P/\Q)/\ R= P/\(Q/\ R)
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7. Didtributive Laws Pv(QAR)=(PvQ)A(PVR)
PA(QvR)=(PAQ)v(PAR)
8. DeMorgan’sLaws ~(PAQ)=—-Pv —Q
—~(PvQ)==PA =Q
9. Absorption Laws Pv(PAQ)=P
PA(PvQ)=P
10. Negation Laws Pv-P=T
(Inverse/ Complement) PA—P=F
11. Equivalance Law P<Q=(P->Q)A(Q—P)
12. Implication Law P->Q=-PvQ
13. Biconditional Property P<Q=(PAQ)v(=PA —Q)
14. Contrapositive of Conditional | P—>Q=-Q— —P
statement

Note that while taking negation of compound statement ‘every’ or
‘All’ isinterchanged by ‘some’ & ‘there exists' isinterchanged by ‘at least
one’ & viceversa

Example 8: If P: “Thisbook is good.”

Q: “Thisbook is costly.”

Write the following statementsin symbolic form.
a) Thisbook isgood & costly.

b) Thisbook isnot good but costly.

¢) Thisbook ischeap but good.

d) Thisbook is neither good nor costly.

€) If thisbook is good then it is costly.

Answers:

a PAQ

b) —PAQ
¢ —QaP
d —PA =Q
e P->Q

2.4.2 Functionally complete set of Connectives:

We know that there are five logical connectives —, v, A, — and <>

But some of these can be expressed in terms of the other & we get a
smaller set of connectives.
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The set containing minimum number of connectives which are
sufficient to express any logical formulain symbolic form is called as the
functionally complete set of connectives.

There are following two functiona ly complete set of connectives.

(1) {~ v} iscomplete set connectives.
Here, the A can beexpressedusing — & v.

.’.P/\QE—| —|(P/\Q)
= (—|PV —|Q)

The — can be expressed in terms of —,v .

The <> can be expressed interms of —, v
P Q =(P->QA(Q—-P)
=(-PvQA(=QvVvP)
E—||:ﬁ (—|PV Q) Vﬁ(—|QV P)]
~.{—, v} isafunctionally complete set of connectives.
Similarly, you can provethat .. {—, A} is complete set of connectives.

2.5 LOGICAL IMPLICATIONS:

A proposition P (p, g, ........ ) is said to logically imply a
propositionQ (p, q, -...... ) written,

P@®m g ........ ) = QM g ....... YiIfQ( g ....... ) is true
whenever P(p, q, ....... ) istrue.

Example9: P= (Pv Q)

Solution :

Consider the truth table for this

PvQ

T+ 4|l
47 4d|lo
4 4 4
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Observethat if Pistrue (T) inrows 1 and 2 then Pv Q isalsotrue(T) .
. P=>PvQ.

fQ q, -...... ) is true whenever P (p, q, -...... ) is true then the
argument. P(p,q, ......) FQ(p,d,......) isvalid and conversely.

i.e. the argument P |-Q isvalid iff the conditiona statement P — Q
isawaystrue, i.e. atautology.

251 Logical Equivalencelnvolving Implications:
Let P& Q betwo statements.

The following table displays some useful equivalences for
implications involving conditional and biconditional statements.

Sr. No. | Logical Equivaenceinvolving implications
1 P->Q=—-PvQ

2 P>Q=-Q—>—P

3 PvQ==P—->Q

4 PAQ==(P—>-0Q)

S —~(P—>Q)=PA=Q

6 (P> Q)A(P—>r)=P—(QAr)
7 (Po>N)A(Q—or)=(PvQ)—>r
8 (P> Q)v(P—>r)=P—(Qvr)
9 (P>r)v(Q—-r)=(PAQ)r
10 P& Q=(P>Q)A(Q—P)

11 P& Q=—Po—-Q

12 P(—)QE(PAQ)V(—‘P/\—‘Q)
13 —(P<>Q)=P+-Q

All these identities can be proved by using truth tables.

26 NORMAL FORM AND TRUTH TABLES:

2.6.1 Wdl Formed Formulas: (wff)

A compound statement obtained from statement letters by using
one or more connectives is called a statement pattern or statement form.
thus, if P, Q, R, ....... are the statements (which can be treated as
variables) then any statement involving these statements and the logical
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connectives —, A, v, —, <> s a statement form or a well formed formula
or statement pattern.

Definition : A propositiona variable is a symbol representing any
proposition. Note that a propositional variable is not a proposition but can
be replaced by a proposition.

Any statement involving a propositional variable and logica
connectivesisawell formed formula

Note : A wff isnot a proposition but we substitute the proposition in place
of propositional variable, we get a proposition.

2.6.1 (a) Truth tablefor a Well Formed Formula:

If we replace the propositional variables in a formula o by
propositions, we get a proposition involving connectives. If a involvesn
propositional constants, we get 2n possible combination of truth variables
of proposition replacing the variables.

Example 10 : Obtain truth valuefor o.=(P—Q)A(Q— P).

Solution : The truth table for the given well formed formula is given
below.

P Q P—>Q Q—-»>P o

T T T T T

T F F T F

F T T F F

F F T T T
2.6.1 (b) Tautology :

A tautology or universally true formulais a well formed formula,
whose truth value is T for al possible assignments of truth values to the
propositional variables.

Example 11 : Consider Pv — P, the truth table is as follows.

F T
F T T
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- Pv—P aways takes value T for all possible truth value of P, it is a
tautology.

2.6.1 (c) Contradiction :
A contradiction or (absurdity) is a well formed formula whose
truth value is false (F) for al possible assignments of truth values to the

propositional variables.

Thus, in short a compound statement that is always false is a
contradiction.

Example 12 : Consider the truth table for PA - P.

= —P PA—P
F F
F T F

~.PA—P aways takes value F for al possible truth values of P, it is a
contradiction.

2.6.1. (d) Contingency :

A wel formed formula which is neither a tautology nor a
contradiction is called a contingency.

Thus, contingency is a statement pattern which is either true or
false depending on the truth values of its component statement.

Example 13 : Show that —(pv q) and —pA—q arelogicaly equivalent.

Solution : The truth tables for these compound proposition is as follows.

2 3 4 5 6 7 8
P Q -P [ =Q | PvQ | -(PvQ) [ -PAr=Q [ 6&7
T T F F T F F T
T F F T T F F T
F T T F T F F T
F F T T F T T T

We cab observe that the truth values of —(pvq) and —pa—q
agree for al possible combinations of the truth values of p and g.
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It followsthat —(pv q) <> (—pA—q) isatautology, therefore the
given compound propositions are logically equivalent.

Example 14 : Show that p— g and —pv g arelogically equivalent.

Solution : The truth tables for these compound proposition as follows.

p q P | 2pvq | P—>(Q
T T F T T
T F F F F
F T T T T
F F T T T

Asthetruth valuesof p— q and —pv q arelogicaly equivalent.

Example 15 : Determine whether each of the following form is a
tautology or a contradiction or neither :

)] (P/\Q)—)(PVQ)

i) (Pv Q)/\(—P/\—Q)
iv) (P—) Q)/\(P/\—Q)
v) [PA(P>-Q)—>Q]

Solution:

i) Thetruthtablefor (pAg)—(pva)

P q pAqQ | PvqQ (p/\q)_>(p\/q)
T T T T T
T F F T T
F T F T T
F F F F T

- All theentriesin thelast column are‘T’.
- (pA@)—(pvq) isatautology.
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1

ii) Thetruthtablefor (pvg)A(—pAa—q) is

1 2 3 4 5 6

p qg |PVd]l =P | =4 | =PA—=q | 3A6
T(T]| T F F F F
TIF| T F I T F F
Fl T | T T F F F
F|F| F T T T F

The entries in the last column are ‘F. Hence (pvq)A(—pA—Qq) is

contradiction.

iii) Thetruth tableis asfollows.

-p

ﬁp/\—|q

pP—q

(—=pA=0)—>(p—0)

m T 4 Hd| ©
m 4 1 d| Q
=4 4 T T

-4 m =4 m

=4 T T 7

4 4 7m -+

- 4 44 -

> All entriesinlast columnare‘T'.
.. (~pAr—q)—>(p—0q) isatautology.

iv) Thetruth tableis asfollows.

—q

pPA—q

P—q

(p—>a)A(pA—0)

m T 4 Hd| ©
m 4 11 4] ©
=4 T 4 T

m m 44 7

4 4 7m -+

m T M T

All theentriesin thelast column are‘F' . Hence it is contradiction.




42

V) The truth table for [p/\(p—>ﬂQ)—>(ﬂ

p q -q | p—>—(¢ p/\(p—>—|q) [p/\(p—>—|q)—>q]
TT| F F F T
T|lF]| T T T F
FlT| F T F T
FIF| T T F T

Thelast entriesare neither all ‘T’ nor al ‘F'.
o [pA(p—>—0g)—>q] is a neither tautology nor contradiction. It is a

contingency.

2.6.2 Normal Form of awell formed formula :

One of the main problem in logic is to determine whether the given
statement is a tautology or a contradiction. One method to determine it is
the method of truth tables. Other method is to reduce the statement form
to, called normal form.

If P& Q are two propositional variables we get various well
formed formula.

The number of distinct truth values for formulasin P and Q is 2.
Thus there are only 16 distinct formulae & any formula in P & Q is
equivalent to one of these formulas.

Here we give a method of reducing a given formula to an
equivalent form called a ‘normal form’. We use ‘sum’ for digunction,
‘product’ for conjunction and ‘litera’ either for P or for— P, where P is
any propositional variable.

Elementary Sum & Elementary Product :

An elementary sum isasum of literals. An elementary product isa
product of literals.

eg. Pv—=Q, Pv—-R ae dementary sum PA—-Q, —PAQ are
elementary products.

Digunctive Normal Form (DNF) :

A formulaisin digunctive normal form if it isasum of elementary
products.

eg. Pv(—|Q/\ R), PV(Q/\ R)
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A conjunction of statement variables and their negations are called
as fundamental conjunctions. Itisalso called min term.

e.g. P, ﬁP, P/\—|Q

Construction to obtain a Digunctive Normal Form of a given formula

The following procedure is used to obtain a disunctive normal form.
1. Eliminate — and < usinglogical identifies.
2. UseDe-Morganslawsto eliminate — before sums or products.

The resulting formula has — only before propositional variables
i.e. it involves sum, product and literals.

3. Apply distributive laws repeatedly to eliminate product of sums.
The resulting formulawill be sum of products of literalsi.e. sum of
elementary products.

Example 16 :

Obtain a digjunctive normal form of
1. PA(P—Q)

2. (P—=QA(-PAQ)
3. (PA-(QAR)V(P—Q)

Answer :

1) Consider, PA(P— Q)
=PA(-PVQ) (Implication law)
(PA=P)V(PAQ) (Distributive law)

Thisisadigunctive normal form of the given formula.
2) Using Implicationlaw P— Q=-PVvQ
~(P—=Q)A(-PAQ)
-PVQ)A(-PAQ) Implication law

(

(-PAQ)A(-PVQ) Commutative law
(-PAQA-P)V(-PAQAQ)  Distributivelaw
(
(

-PA-PAQ)V(-PAQAQ)  Associativelaw
-PAQ)V(-PAQ)

Thisisrequired disunctive normal form
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=(PA=(QAR))V(-PVQ) Implication law
=(PA(-QV-R))V(-PVQ) De-Morgans law
=((PA-Q)V(PA-R))V(-PVvQ) Distributive law
=(PA-Q)V(PA-R)V(-PVQ) Associative law

Thisisthe digunctive normal form of the given formula.

e Note that for the same formula we may get different digunctive
normal forms. So we introduce one or more norma forms called the
principle digunctive normal form or sum of products canonical form
in the next definition. The advantage of constructing principle
digunctive norma form is that for a given formula principle
digunctive normal form is unique.

e Two forms are said to be equivalent iff their principle disunctive
normal forms consider.

*Minterm:
A min term in n propositiona variables P;, P, ...... , Pnis
QNAQA....... AQ, where each Q; iseither P, or — P.

eg.
The mintermsin P1 & Poare PL A Py, PL A= Py, = P1 A Py,
—PL A= Py,

In general the number of min terms in n propositiona variables
is2".

2.6.3 Principle Digunctive Normal Form :

A formula «isin principle disunctive normal form if « isasum
of min terms.

Steps to Construct Principle Digunctive Normal Form of a given
Formula: -

1. First obtain the disiunctive normal form for given formula

2. Drop edementary products, which are contradiction such as
(PA=P)

3. If B & — P arenot present in an elementary product «, replace o
by(aAR)v(aA—=R)
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4. Use the above step until all elementary products are reduced to
sum of min terms.

Use idempotent laws to avoid repetition of min terms.
Example 17:

Obtain the canonical sum of product form i.e. principle digunctive
normal form of

1. a=PV(-PA-QAR)
2. awhosetruth tableis given below

Row No.

T|m|m|m|d|d|H|] o
nal el Gl Bl Bl Bl Bl Bl @)
B Gl it Gl Bl Bl Bl Bl PPV
| Bl et e d e B Bl Bl Ie)

INJoO|OR~WIN]EF

Answer :

1) «a is dready in digunctive norma form. There are no
contradictions. So we have to introduce missing - variables.
-PA-QAR INn o isamin - term.

As P=(PAQ)V(PA-Q)

. P=(PAQAR)V(PAQA-R)V(PA-QAR)V(PA-QA-R)
Therefore the canonical sum of products form of « is
(PAQAR)V(PAQA-R)V(PA-QAR)V(PA-QA-R)

2) For given «, we have T in column corresponding to rows 1, 4, 5
and 8 The min terms corresponding to these rows are
PAQARPA-QA-R-PAQAR and -PA-QA—-R

.. The principle digunctive normal form of « is
(PAQAR)V(PA-QA-R)V(-PAQAR)V(-PA—QA-R)

Fundamental digunction (Max term)
A digunction of statement variables and (or) their negations are
called as fundamental disjunctions. It isalso called max term.

eg. P,-P,-PAQ,PAQ,PV-PVQ
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Conjunctive Normal Form : -
A statement form which consists of a conjunction of afundamental
digunction is called a conjunctive normal form.

eg. PAQ,(PVQ)A-P

If o isindigunctive normal form then —« isin conjunctive normal form.

Maxterm
A max term in n propositiond variables B,P.......RPis

QVQ, V... Vv Q, where each Q; iseither P or —p.

2.6.4 Principal Conjunctive Normal form :

A formula «isin principle conjugate normal form if «isaproduct
of max terms. For obtaining the principle conjunctive normal form of «
we can construct the principle disunctive normal form of — o and apply
negation.

Example 18

Obtain a conjunctive normal form of
a=PV(Q—R)

a:<—|P—> R)/\(PHQ)

1) Consider
a= P\/(Q—> R)
—|a:—|<P\/<Q—> R))
=-(PV(-QVR)) Implication law
=-PA(=(-QVR)) De-Morgans law
=-PA(QA-R) De-Morgans law & Double negation

~.a=-PA(QA-R)

Hence, thisisthe required conjunctive normal form.

The principa  conjugate normal form of o is
=(-pA(QA-R))=PV-QVR

2) Oé:<_\P—> R)/\<P<—>Q)
Since, we know that
P—~Q=-PVvQ Implication law
P-Q=(P—Q)A(Q—P) Implication law
sa=(-P=R)A(P-Q)A(Q—P))
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(~(=P)VRJA((-PVQ)A(-QVP))
(PVR)A((=PVQ)A(-QVP))
(PVR)A(-PVQ)A(—-QV P)

«

Which is required conjunctive normal form.

2.7 PREDICATESAND QUANTIFIERS

2.7.1 Predicates : A predicate is a statement containing one or more
variables.

Proposition :
If values are assigned to all the variables in a predicate, the
resulting statement is a proposition.
e.g.
1. x<9isapredicate
2. 4<9isaproposition

Propositional Function :

Let a be a given set. A propositional function (or : on open
sentence or condition) defined on A is an expression P(x) which has the
property that P(a) istrue or falsefor each a € A.

The set A is called domain of P(x) and the set T,, of all elements of
A for which P (@) istrueis called the truth set of P(x).

e, T,={x:xe A p(x)is trug} or T,= {x : p(X)} Another use of

predicates is in programming Two common constructions are “if P(x),
then execute certain steps’ and “while Q(x), do specified actions.” The
predicates P(x) and Q(x) are caled the guards for the block of
programming code often the guard for a block is a conjunction or
digunction.

eg. Let A ={x/xisaninteger < 8}
Here P(X) is the sentence “x is an integer less than 8”.

The common property is *an integer lessthan 8".
.. P(1) isthe statement “1 is an integer lessthan 8”.
. P(1)istrue, -.1€ A etc.

2.7.2 Quantifiers:
The expressions ‘ for al’ and ‘there exists' are called quantifiers.

The process of applying quantifier to avariable is called quantification of
variables.
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Univer sal quantification :

The universal quantification of a predicate P(x) is the statement,
“For al values of x, P(x) istrue.”

The universal quantification of P(x) is denoted by ¥ for all x P(x).

The symbol - iscalled the universal quantifier.
eg.

1) The sentence P(x) : - (-X) = x is a predicate that makes sense for
real numbers x.

The universal quantification of P(X), ¥ x P(X) is a true statement
because for all real numbers, -(- X) = x.

2) Let Q(X) : x + 1< 5,then ¥ Q(X) : x + <5isafalse statement, as
Q(5) is not true. Universal quantification can also be stated in English as

“for every X, “every xX’, or “for any x.”

Existential quantification -
The existential quantification of a predicate P(x) is the statement
“There exists avalue of x for which P(x) istrue.”

The existential quantification of P(x) is denotedIxP(x). The
symbol 3 iscalled the existential quantifier.

e.g.
1) Let Q:x+1< 4. The existentia quantification of Q(x), IxQ(X)

is atrue statement, because Q(2) is true statement.

2) The statement Jy, y+2=y is fase There is no vaue of y for
which the propositional function y+2=y produces a true statement.

Negation of Quantified statement :

—(¥x € ajp(x) = (Ix € A) = p(x)

or =¥ xpxX) = Ix-p(X)

Thisistrue for any proposition p(x). DeMorgan’s Law.

273 The result for universal and existential quantifiers is as
follows.

) —(¥xe A) p(x) = (3xe A)-p(x)
In other words, the following two statements are equivalent.

i) Itisnot truethat, for all ae A, P(a) istrue.
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i) Thereexistsan a€ A, such that P(a) isfalse.
1) —(3xe A) p(x) = (Vxe A)=p(x)

That is, the following two statements are equival ent.

i) It isnot true that for some a € A, P(a) istrue.
i) Foral ac A, P(a) isfase.

Other several properties for the universal and existential quantifiers

1) 3Ix(p(X) = Q(X) = ¥xP(x) = 3xq(x)

V) 3x(P(X) A Q(X)) = IxP(x) A IxQ(x) isatautology.

V) ((vxp(x)) Vv (VXQ(X)) = ¥X(p(X) VQ(X)) isatautology.
VI)  WX(P(X) AQ(X) = VXP(X) A YXQ(X)

VI 3x(P(X) VQ(X) = Ix(P(x) v IxQ(X)

Example 19

Express the statement using quantifiers. “Every student in your school has
acomputer or has afriend who has a computer.”

Solution :

Let c(X) : “x has a computer”
F(xy) : “xand y are friends”

.. We have
vx(e(x) v 3y(c(y) AF(x,Y))

Example 20:

Express following using quantifiers.
i) There exists a polar bear whose colour is not white.
i) Every polar bear that isfound in cold region has a white colour.

Solution :

Let  A(X) : xhasawhite colour
B(X) : xisapolar bear.
C(x) : xisfound in cold region.
Over the universe of animals.
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i) There exists a polar bear whose colour is not white.
IX(B(x) — —~A(X)

i) Every polar bear that isfound in cold regions has a white colour.
YX((B(X) A c(X)) — A(X)) .

2.8 THEORY OF INFERENCE FOR THE PREDICATE
CALCULAS

If an implication P=-Q is a tautology where P and Q may be
compound statement involving any number of propositiona variables we
say that Q logically follows from P. Suppose P(R, P, ....... P)— Q. Then

this implication is true regardless of the truth values of any of its
components. In this case, we say that q logicaly follows from Py,
PZ.....,Pn.

Proofs in mathematics are valid arguments that establish the truth
of mathematical statements.

To deduce new statements from statements we already have, we
use rules of inference which are templates for constructing valid
arguments. Rules of inference are our basic tools for establishing the truth
of statements. The rules of inference for statements involving existential
and universal quantifiers play an important role in proofs in Computer
Science and Mathematics, athough they are often used without being
explicitly mentioned.

28.1 Valid Argument :
An argument in propositional logic is a sequence of propositions.

All but the final propositions in the argument are called hypothesis
or Premises.

Thefina proposition is called the conclusion.

An argument form in propositional logic is a sequence of
compound propositions - involving propositiona variables.

An argument form is valid if no matter which particular
propositions are substituted for the propositiona variables in its premises,
the conclusion istrue if the premises are all true.

2.8.2 Rulesof Inferencefor Propositional logic

We can aways use a truth table to show that an argument form is
valid. Arguments based on tautologies represent universally correct
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method of reasoning. Their validity depends only on the form of
statements involved and not on the truth values of the variables they
contain such arguments are called rules of inference.

These rules of inference can be used as building blocks to
construct more complicated valid argument forms

e.g.
Let P:“You haveacurrent password’
Q: “You can log onto the network”.

Then, the argument involving the propositions,
“If you have a current password, then you can log onto the
network”.

“You have a current password” therefore: You can log onto the
network” hastheform ...

P—Q
P

2.Q

Where .. isthe symbol that denotes ‘therefore we know that when P & Q
are proposition variables, the statement ((P — Q) A P) — Q isatautology.

.. Thisis valid argument and hence is a rule of inference, called modus
ponens or the law of detachment.

(Modus ponensis Latin for mode that affirms)
The most important rules of inference for propositional logic are as
follows.....

Rule of Inference | Tautology Name
DIP (PA(P—Q)—Q Modus ponens
P—Q
-.Q
2| -0 [~QA(P—Q)|——P Modus tollens
P—Q
..—P
3) [P0 [(P—QA(Q— R)|— (P— | Hypothetical
Q—R syllogism
S P—R
4) | PvQ [(PVQ)A-P]—Q Disjunctive
P syllogism
=-.Q
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5(_P P—(PVQ) Addition
- PVQ

6) | PAQ (PAQ)— P Simplification
. P

NP (PAQ)—PAQ Conjunction

Q

S PAQ

8 [ PVQ [(PVQ)A(=PVR)]— (QV H Resolution
-PVR
SQVR

Example 21 :

Show that R—S can be derived from the premises
(i) P—(Q—YS) (ii) = (RVP) andiii) Q.

Solution :

The following steps can be used to establish the conclusion.

Steps Reason
1 P—-(Q—Y) Premise (i)
2 RVP Premise (ii)
3 R—P Line 2, implication
4 R—(Q—YS) Hypothetical Syllogism
5 R_>(ﬁQ\/ s) Line 4, implication
6 - Rv(ﬁst,) Line 5, implication
7 Q Premise (iii)
8 —-RVS Line 6, 7 and Digunctive syllogism
9 R—S Line 8, implication
Hence the proof :
Example 22 :

Test the validity of the following arguments :

If milk is black then every crow iswhite.

If every crow iswhite then it has 4 legs.

If every crow has 4 legs then every Buffalo is white and brisk.
The milk is black.

So, every Buffalo iswhite.

agrwbdpE
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Solution :

Let P:Themilkisblack
Q : Every crow iswhite
R : Every crow hasfour legs.
S: Every Buffalo iswhite
T : Every Buffaloisbrisk

The given premises are

i) P->Q

i)y Q-—-R

(i) R—> SAT

(iv) P

The conclusion is S. The following steps checks the validity of argument.
1. P->Q ... premise (1)

2. Q—-R ... Premise (2)

3. P->R ... line 1. and 2. Hypothetical syllogism (H.S.)
4, R—> SAT ... Premise (iii)

5. P—> SAT ...Line3.and4..H.S.

6. P ... Premise (iv)

7. SAT Line 5, 6 modus ponets

8. S Line 7, smplification

. The argument isvalid

Example 23:

Consider the following argument and determine whether it isvalid or not.
Either 1 will get good marks or | will not graduate. If | did not gradute |
will goto USA. | get good marks. Thus, | would not go to USA.

Solution :
Let  P: I will get good marks.
Q : I will graduate.

R: 1 will goto USA

The given premises are
i) PV-Q

i) -Q—>R

iii) P

The conclusionis— R.
The following steps checksis validity.

Steps Reason
1. PV-Q ... premise (i)
2. ——PV-Q ...Double negation
3. -P>-0Q Line 2, Implication
4. -Q—>R ... premise (ii)
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5. —-P—>R Line3, 4, H.S.
6. P Premise (iii)
7. R Line 5 implication and line 6
8. Conclusion is R or — Line7 simplification
R

.. Theargument is not valid

29 MATHEMATICAL INDUCTION

Here we discuss another proof technique. Suppose the statement to
be proved can be put in the from ¥ n>ny. P(n), where ng is some fixed
integer.

That is suppose we wish to show that P(n) istrue for al integersn > ny.

The following result shows how this can be done.
Suppose that
@ P(ng) istrueand
(b) If P(K) istrue for some K > ng, then P(K + 1) must aso be
true. The P(n) istruefor all n > n.

Thisresult is called the principle of Mathematical induction.

Thus to prove the truth of statement V¥ n>n,. P(n), using the
principle of mathematical induction, we must begin by proving directly
that the first proposition P(ng) is true. This is called the basis step of the
induction and is generally very easy.

Then we must prove that P(K) = P(K + 1) is a tautology for any
choice of K > ng. Since, the only case where an implication isfalseisif the
antecedent is true and the consequent is false; this step is usually done by
showing that if P(K) were true, then P(K + 1) would also have to be true.
This step is called induction step.

In short we solve by following steps.
1. Show that P(1) istrue.
2. Assume P(K) istrue.
3. Prove that P(k +1) istrue using P(k)

Hence P(n) istrue for every n.

Example 24 :
Using principle of mathematica induction prove that...
) 1+2+3+ .. +n="04D (o dins

2) n°- nisdivisibleby 3 for nez*
3 2" > nfor al positive integers n.
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4) nl > 2™t
5)  IfALA ... Anbeanynsetsthen(UAj:HK
i=1 i=1
Solution :
) n(n+1)
Foraln, 1) Let P(n).1+2+3+———+n:T,n21
Step1: Hereng=1
We must show that P (1) istrue.
P (1) isthe statement
1o 11+
2
Which isclearly true.
Hence P(1) istrue.
Step 2:
Assume P(K) istruefor K <n.
PK)=1+2+ ... +K = @ K>1 ..(1)
Step 3:
To show that P(K + 1) istrue.
PK+1)=1+2+ ... +(K+1)= K +1)((;+1)+1)
Consider,
1+2+ ... +(K+1)=1+2+...+K+(K+1)
= @ + (K + 1) using egn. (1)
142+ . +(K+1)= K(K”);Z(K*l)
_ (K+D)+(K+2)
2
_ (K+D+(K+D+D
2

WhichisRHS of P(K + 1)
Thus, P(K + 1) istrue.

s By principle of mathematical induction it follows that P(n) is true
for al n>1.
142+ ...+n= ”(”2”)
2)  LetP(n):n®-nisdivisibleby 3.
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Step 1: We note that,
P(1): 1°-1=0isdivisibleby 3
P(1) istrue.

Step 2:
Assume P(K) istruefor K <n

P(K): K3 - K isdivisible by 3.
WecanwriteK —k=3mforme N. ...... D

Step 3:
We prove that P(K + 1) istrue.

P(K +1); (K + 1)®— (K + 1) isdivisible by 3.
Consider

(K+1)>—(K+1) K3+3K?+3K+1-K-1
K3+ 3K? + 2K
3m+K +3K?+ 2K (using (1))

3(m+K +K?

Hence (K + 1)*— (K + 1) isdivisible by 3.
Thus, P(K + 1) istrue when P(K) istrue.

.. By principle of mathematical induction the statement is true for every
positive integer n.

3) LetP(n):2">n V positive integer n.

Stepl:Forn=1, 2'=2>1
Hence P(i) istrue.

Step 11 : Assume P(K) istruefor every positive integer K i.e.
2“>K (1)

Step 111 : To show that P(K + 1) istrue
From (),
2> K

Multiplying both sides by 2, we get,
22>2K
2K+1 > 2K
2SS K+K>K+1

- P(K + 1) istrue when P(K) is true. Hence, by principle of mathematical
induction, P(n) istrue for every positive integer n.
2" > nfor positive integer n.

4) Let P(n) : n! > 2™
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Stepl:Forn=1
N=1>2¥1=20=1
. P(1) istrue.

Step 11 : Assume P(K) istruefor some K < n.
sKE> 29 ()

Step 111 : Provethat P(K + 1) istrue.
Consider K! > 2<% (from (1))
As K+1>2

Kl > 22 andK +1>2

Taking the product we get,
KIx(K+1)>2*tx2
(K + DK! > 2«1
(K + 1)1 > 2

Hence P(K + 1) istrue.
. By principle of mathematical induction P(n) is true for every n.

n_ ) n—
5) Let P(n): [UAij: NAi

i=1 i=1
Step 1 : Forn=2,
Hs = (ﬁf\i}(m)imz
& RHS = ﬁﬂi=§1052
LHS = RHS .

Hence P(2) istrue.

Step 2 : Assume P(K) istruefor someK < n
K k—
(UAiJ: NA; (D)

i=1 i=1

Step 3: Provethat P(K + 1) istrue.
Consider

()

om0

K
NA; N Ay (from (1))
i=1

i=1

P(K + 1) istrue
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By principle of mathematical induction P(n) istrue for all n.
n n—
UA; [= NA;
i=1 i=1

2.10 UNIT AND EXERCISE :

1. Construct the truth table of

P->Qe(-Q—>=P [Jan. 11]
2. Construct the truth table of
QP V(Q™r=P) [Dec. 09]

3. Construct the truth table for each of the following.
) P>QV(E=P-Q
i) PP
i) (PVQ)a—R
iv) P>(—=QVR)
V) (PQA(-P—-R)

4. Show that PV Pv(QAaR)and (PV Q) A (PV R) are logicaly
equivalent.

5. Showthat (<P A (wQ A R)V(Q ARV (P AR=R [Jn. 1]]

6. Showthat (P A Q) —» (PV Q) isatautology.

7. Determine whether (P —> Q) A (Q > R) » (P — R) isatautology or

contradiction or neither. [May 10]
8. Obtain the conjunctive normal form of

—(PVQ < (PAQ) [Jan. 2011]
9. Obtain conjunctive and disunctive normal form of the following.

i) P"QV(E=PAQAR) [May 10]

i) PV-Q->PeQ) [Dec. 09]

i) PV(Q—->R)

iv) = (PVQ <« (PAQ)
v) QV(PA-QV (=PA=0Q)
10. Objtain principle disunctive and conjunctive normal form of
) PV-Q—->(Pe-Q)
i) (PV-Q—->(PeQ)
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12.
13.

14.

15.

16.

17.

18.

19.

20.
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Obtain a conjunctive normal form of Qv (PA—=Q)v(—~PA—-Q)
show that it is a tautol ogy.

What is quantifier ? Explain with suitable examples.

Check the validity of following argument “If Anand has completed
M.C.A. or M.B.A. Then heisassured agood job. If Anand is assured a
good job, he is happy. Anand is not happy. So Anand has not
completed M.C.A.”

Show that conclusion S follows from the premises (P - Q) A (P >
R), - (Q A R)yandSV P.

Express the following using quantifiers.

i) Every student in the college has a computer or has a friend who
has a computer.

i)  All rational numbers are real numbers.
iii) Somerational numbers are not real.
iv) All men are mortal.

v) Somewomen are beautiful.

Using Principle of mathematical induction prove that n® + 2n is
divisible by 3 for every positive integer n.

Prove by mathematical induction that 2" < n! for n> 4.

Show by mathematical induction that for al

n2112+22+32+—__+n2=w

Prove by mathematical induction that 3 / (n® - n) for every positive
inter n.

Prove by mathematical induction
i) 5"+ 3isdivisibleby 4.
i) n?+nisawayseven.

2 2
i) LetP(n): 13+ 2+ + ... .+n°= W
a) Use P(k) to show P(k+1)
b) IsP(n) trueforaln>1

o300 S0 %
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SET THEORY AND RELATION

Unit Structure

3.0 Objectives

3.1 Introduction

3.2. Definitions and Representation of sets
3.3 Diagrammatic Representation of a set
34 TheAlgebraof sets

3.5 The Computer representation of sets
3.6 Relations

3.7 Representation of Relations

3.8 Typesof Relations

3.9 Reationsand Partition

3.10 Unit End Exercise

3.0 OBJECTIVES

Definition and examples of sets.

Basic operations and diagrammatic representation of sets.
Definition of relations and diagraphs

Concept of partition and its relationship with equival ence relation.

pLODNPE

3.1 INTRODUCTION:

In the school, we have dready studied sets along with the
properties of the sets. In this chapter, we revise the concept and further,
discuss the concept of an algebraic property called relation.

Set Theory, branch of mathematics concerned with the abstract
properties of sets, or collections of objects. A set can be a physica
grouping, such as the set of all people present in a room; or a conceptua
aggregate, such as the set of al British prime ministers, past and present.
Each of these setsis defined by a property that its members share, but it is
possible for a set to be a completely arbitrary collection.

Set theory wasfirst given formal treatment by the German
mathematician Georg Cantor in the 19th century. The set concept is one of
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the most basic in mathematics, explicitly or implicitly, in every area of
pure and applied mathematics, as well as Computer science.

Relationships between elements of sets occur in many contexts.
We ded with many relationships such as student’s name and roll no.,
teacher and her speciaisation, a person and a relative (brother — sister,
mother — child etc.) In this section, we will discuss mathematical approach
to the relation. These have wide applications in Computer science (e.g.
relational algebra)

3.2. DEFINITIONS AND REPRESENTATION OF SETS:

Definition 3.2.1: Set isan unordered collection of objects.
The object in aset iscalled as an element or member.

We denote sets by capita letters such as A, B, C and elements by small
letters. Typically sets are described by two methods

i. Roster or list method:
In this method, all the elements are listed in braces. E.g.
A={2357,11,13}
N={24G6,..}

ii. Set-Builder method:
In this method, elements are described by the property they
satisfy. E.g.
A={ x:xisaprime number less than 15}
B={x:x=2n,ne N}

Definition 3.2.2: A set containing no element is called as an empty set.
E.g. Set of even prime numbers greater than 10.
Empty set isdenoted by { } or ¢.

Definition 3.2.3: A set Alissaid to be asubset of set B, if every element
of Aisaso an element of B. It isdenoted by ‘c’
AcB.EgA={1,234}andB={1,23,4,7,8} ThenA cB.

Definition 3.2.4: A set Ais said to be a superset of set B, if B is a subset
of A. Itisdenoted by A o B.

Definition 3.2.5: A set isAissaid to be a proper subset of B, if Aisa
subset of B and there is at least one element in B, which is not an element
of A. Set A explained in Definition 3.2.3, is a proper subset of B.

Definition 3.2.6: A set which contains al objects under consideration is
called as Universal set and is denoted by U.
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Note: Two sets are said to be equa if and only if they have same
elements. Eg. IfA={2,57,9}andB={5,2,7,9}, then Aand B are

equal.

Now we shall discuss various operations on sets. For this discussion, let U
be universal set and let A and B be two subsets of U.

Definition 3.2.7: Set of all ementsin A or in B or in both, is defined as
union of A and B and is denoted by A U B.

Eg IfA={12 35 7} andB={2, 5 1011}, then
AUB={1,2 35,710, 11}

Definition3.2.8; Set of all elements, that are common in A aswell asin B,
is defined asintersection of A and B and is denoted by A n B.

Eg IfA={12 3,5 7} andB={2,5, 10, 11}, then
AnB={2 5}.

Definition 3.2.9: Set of all elements, that arein A, but notin B, iscalled as
difference between A and B and denoted by
A-B.Eg. IfA={1,4,7,89} and B={4,9,11,13} then, A—-B={1,7, 8}.

Definition 3.2.10: The total number of elements in a set is caled as
cardinality of aset. E.g. If A={2, 3,5, 7, 11, 13} then, Cardinality of A,
denoted by | A |, is 6. If asetisinfinite, then its cardindity isinfinity.

Definition 3.2.11: If U is a universal set and A is its subset, then
complement of A, denoted by A, is all elements of U, that are not in A.
Eg lfU={x:xeN,x<15} and

A={x:xeUand3|x},then A°={ 1,2 4,578, 10, 11, 13, 14}.

Definition 3.2.12: A power set of a set A, denoted by P(A), is set of all
subsetsof A. E.g. IfA={ 1, 2, 3}, then,

P(A)={¢.{1},{2},{3}.{1,2,{1,3},{2,3}.{1, 2 3}}.

Note: If number of dementsin A is n, then the number of e ementsin the
power set of Ais?2".

Definition 3.2.13: Let A and B be two sets. The product set of A and B (or
Cartesian product of A and B), denoted by

A x B, isset of al ordered pairs from A and B. Thus,
AxB={(ab):aecA beB}.

Eg LeeA={1,23}andB={ 4,5} then

AxB={(1,4),(1,5),(2 4),(25), (3 4), (3, 5)}.

3.3DIAGRAMMATIC REPRESENTATION OF A SET:
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British mathematician, John Venn, devised a simple way to

represent set theoretic operations diagrammatically. These diagrams are
named after him as Venn Diagrams.

Universa set is represented by a rectangle and its subsets using a
circle within it.

In the following figures, basic set theoretic operations are
represented using Venn diagrams.

Figure3.1: Aisasubset of universal set U.

U

Figure3.2: AcB

Figure3.3: A u B : Entireshaded region
A N B : Dark gray shaded region
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Figure 3.4: A%, the shaded region

Figure 3.5: A—B, the shaded region

34THE ALGEBRA OF SETS:

The following statements are basi c consequences of the above definitions,
with A, B, C, ... representing subsets of auniversal set U.

1. AuB=BUA. (Unioniscommutative)

2. AnB=Bn A (Intersection is commutative)

3. (AuB)uC=AuU (Bu C). (Unionisassociative)

4. (AnB)nC=An (Bn C). (Intersection is associative)
5 Au¢d=A

6. And=9¢.

7. AuU=U.

8 AnU=A

0.

Au (BN C)=(AuB) N (Au C).(Union distributes over intersection)
10. Am(BuC) (AmB) U (AN C). (Intersection distributes over union)
11. AUAS=U.

12. AN A® = ¢.

13. (AU B)® = A° n B®. (de’ Morgan’'slaw)

14. (A N B)® = A° U B°. (de’ Morgan’'slaw)

IS5 AVUA=An A=A

16. (A9° = A

17.A-B=ANB".

18.(A—B)—C=A—-(BuU C).

19.1fANB= ¢, then AUB)—B=A.
20.A—-(BUC)=(A-B)n (A-C).

Thisagebraof setsis an example of a Boolean algebra, named
after the 19th-century British mathematician George Boole, who applied
the algebrato logic. The subject later found applications in e ectronics.
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3.5THE COMPUTER REPRESENTATION OF SETS:

There are various ways to represent sets using a computer. Modern
programming languages, such as JAVA, have predefined collection class
to represent the set. In such class, we need to insert the set elements and
there are various class operations defined for the algebraic operations on
the set.

In this section, we shall present a method for storing elements
using the arbitrary ordering of the elements of auniversal set.

Assume that the universal set U isfinite (and of reasonable size so
that the number of elements in U are not larger than the memory size).
First, specify the arbitrary ordering of elements of U, such as ay, a, ..., ...,
an. Represent a subset A of U with the bit string of length n, where the i
bitin thisstringis 1if & belongsto A and is 0 otherwise.

Eg LetU={1,2 345,67, 8,9, 10} and A be subset of U containing
elements that are multiples of 3 or 5. Thus,

A ={3, 5, 6,9, 10}. We shall represent elements of U as per the order
given in the above set. Then, A represents a bit string 0010110011.

With this, we have completed basic discussion on set theory and
now isthe time to check the understanding for the same.

3.6 RELATIONS:

Relationship between elements of sets is represented using a
mathematical structure called relation. The most intuitive way to describe
the relationship is to represent in the form of ordered pair. In this section,
we study the basic terminology and diagrammatic representation of
relation.

Definition 3.6.1: Let A and B be two sets. A binary relation from Ato B
isasubset of A x B.

Note 3.6.1: If A, B and C are three sets, then a subset of
AxBxC isknown asternary relation. Continuing this way
asubset of AjxApx...xA, iISknown asn —ary relation.

Note3.6.2: Unless or otherwise specified in this chapter
arelation isabinary relation.

Let A and B be two sets. Suppose Risarelation fromAtoB (i.e. R
is a subset of A x B). Then, Ris a set of ordered pairs where each first
element comes from A and each second e ement from B. Thus, we denote
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it with an ordered pair (a, b), wherea € Aand b € B. We aso denote the
relationship with a R b, which isread as a related to b. The domain of Ris
the set of all first elements in the ordered pair and the range of Ris the set
of al second elementsin the ordered pair.

Example3.1: LeeA={1,2,3,4} andB={ x,y, z}. Let
R={(1,x),(2,x),(3,v), (3,2}. Then Risareation from Ato B.

Example 3.2: Suppose we say that two countries are adjacent if they have
some part of their boundaries common. Then, “is adjacent to”, isarelation
R on the countries on the earth. Thus, we have, (India, Nepa) € R, but
(Japan, Sri Lanka) ¢ R.

Example 3.3: A familiar relation on the set Z of integersis “mdividesn”.
Thus, we have, (6, 30) € R, but (5, 18) ¢ R.

Example 3.4: Let A be any set. Then A x A and ¢ are subsets of A x A and
hence they are relations from A to A. These are known as universal
relation and empty relation, respectively.

Note 3.6.3: As relation is a set, it follows al the algebraic
operations on relations that we have discussed earlier.

Definition 3.6.2: Let R be any relation from a set A to set B. The inverse
of R, denoted by R™, is the relation from B to A which consists of those
ordered pairs, when reversed, belongto R. That is:

R'={(ba):(ab) e R

Example 3.5: Inverse relation of the relation in example 1.1 is, R = {(x,
1), (%2, (v, 3), (z 3)}.

3.7 REPRESENTATION OF RELATIONS:

Matrices and graphs are two very good tools to represent various
algebraic structures. Matrices can be easily used to represent relation in
any programming language in computer. Here we discuss the
representation of relation on finite sets using these tools.

Consider therelation in Example 3.1.
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O O - P |X
O Fr» O OKK
O O O |N

A W NP

Fig. 3.1

Thus, if a R b, then we enter 1 in the cell (a, b) and 0 otherwise.
Same relation can be represented pictorialy as well, asfollows:

—

Fig 3.2

Thus, two ovals represent sets A and B respectively and we draw an arrow
fromae Atob e B,ifaRb.

If the relation is from afinite set to itself, there is another way of pictorial
representation, known as diagr aph.

For example, let A = {1, 2, 3, 4} and R be a relation from A to itself,
defined as follows:

R={(12),(22),(24),(32),(34),(41),(423)}

Then, the diagraph of R is drawn as follows:

Fig 3.3

The directed graphs are very important data structures that have
applications in Computer Science (in the area of networking).

Definition 3.7.1: Let A, B and C be three sets. Let R be arelation from A
to B and S be arelation from B to C. Then, composite relation R°S, is a
relation from A to C, defined by,

a(R°S)c, if thereissome b € B, such that a Rb and b bsc.
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Example3.6: Let A={1,2,3,4},B={a b,c, d},
C={xy,z}andlet R={(1, a), (2, d), (3, a), (3, b), (3, d)} and S= {(b,
X), (b, 2), (c,y), (d, 2)}.

Pictorial representation of the relation in Example 3.6 can be shown as
below (Fig 1.4).

Fig 3.4

Thus, from the definition of composite relation and also from Fig 3.4, R°S
will be given as below.

R°S={(2, 2, (3, %), (3, 2}.

There is another way of finding composite relation, which is using
matrices.

Example 3.7: Consider relations R and S in Example 3.6. Their matrix
representations are as follows.

1 000 0 0O
0 001 1 0 1
MR= Ms:
1101 010
0 00O 0 01

Consider the product of matrices Mg and Ms as follows:
0 0O

0 01
1 01

0 0O

Observe that the non-zero entries in the product tell us which elements are
related in R°S Hence, MgMs and Mges have same non-zero entries.

3.8 TYPESOF RELATIONS:

MRMS -

In this section, we discuss a number of important types of relations
defined from a set A to itself.
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Definition 3.8.1; Let R be arelation from aset Atoitsalf. Ris said to be
reflexive, if for every a € A, aRa (aisrdated to itself).

Example 3.8: Let A={a, b, c, d} and R be defined asfollows:
R={(a a), (a ¢), (b, a), (b, b), (c, c), (d, c), (d, d)}.
Risareflexiverelation.

Example 3.9: Let A be a set of positive integers and R be arelation on it
defined as, a R b if “a divides b”. Then, R is a reflexive relation, as a
dividesto itself for every positive integer a.

Note 3.8.1: If we draw adiagraph of areflexive relation,
then all the vertices will have a loop. Also if we represent reflexive
relation using amatrix, then all its diagona entrieswill be 1.

Definition 3.8.2: Let R be arelation from a set A to itself. Ris said to be
irreflexive, if for every a € A, aRa (ais not relgred to itself).

Example 3.10: Let A be a set of positive integers and R be a relation on it
defined as, a R b if “aislessthan b”. Then, Ris an irreflexive relation, as
aisnot lessthan itself for any positive integer a.

Example3.11: Let A={a b, c, d} and R be defined as follows:

R={(a ), (a ¢), (b a), (b, d), (c,c),(dc),(d d)}.

Here R is neither reflexive nor irreflexive relation as b is not related to
itself and a, ¢, d arerelated to themselves.

Note 3.8.2: If we draw adiagraph of an irreflexive relation,
then no vertex will have a loop. Also if we represent irreflexive relation
using a matrix, then all its diagonal entries will be 0.

Definition 3.8.3: Let R be arelation from a set A to itself. Ris said to be
symmetric, if fora,b € A,ifaRbthenbRa.

Definition 3.8.4: Let R be arelation from a set A to itself. Ris said to be
anti-symmetric, if fora, b e AifaRband bR a, thena=b. Thus, Ris
not anti-symmetric if there existsa, b € AsuchthataRband bRabut a
#h.

Example 3.13: Let A={1, 2, 3, 4} and R be defined as:
R={(1,2),(23),(2 1), (3 2), (3, 3)}, then Ris symmetric relation.

Example 3.14: An equality (or “is equal t0") is a symmetric relation on
the set of integers.
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Example 3.15: Let A={a, b, ¢, d} and R be defined as:
R ={(a, b), (b, @), (a, ¢), (c, d), (d, b)}. Ris not symmetric, as a R c but

¢ R a. Risnot anti-symmetric, because a Rb and
bRa, buta=b.

Example 3.16: The relation “less than or equa to ()", is an anti-
symmetric relation.

Definition 3.8.5: Let R be arelation defined from a set A to itself. For a, b
e A, if aRb, thenb R a, then Ris said to be asymmetric relation.

Example3.17: Let A = {a, b, ¢, d} and R be defined as:
R ={(a b), (b, ¢), (b, d), (c, d), (d, @}. R here is asymmetric relation.

Because a R b but b R a, b R ¢ but ¢ R b and so on.

Example 3.18: Relation “is less than ( < )”, defined on the set of all real
numbers, is an asymmetric relation.

Definition 3.8.6; Let R be arelation defined from aset Atoitself. Rissaid
to transitive, if fora, b,c € A,aRbandbRc,thenaRc.

Example 3.19: Let A={a, b, ¢, d} and R be defined as follows. R = {(a,
b), (a, ©), (b, d), (a, d), (b, ¢), (d, ¢)}. Here Ristransitive relation on A.

Example 3.20: Relation “a divides b”, on the set of integers, isatransitive
relation.

Definition 3.8.7: Let R be arelation defined from a set A to itsdlf. If Ris
reflexive, symmetric and transitive, then R is called as equivalence
relation.

Example 3.21: Consider the set L of lines in the Euclidean plane. Two
lines in the plane are said to be related, if they are paralel to each other.
Thisrelation is an equivalence relation.

Example 3.22: Let m be a fixed positive integer. Two integers, a, b are
said to be congruent modulo m, written as: a=b (mod m), if mdividesa —
b. The congruence relation is an equivalence relation.

Example3.23: Let A={2,3 4,5}and let R={(2,3),(3,3),(4,5),(5.1)} -

ISR symmetric, asymmetric or antisymmetric?
Solution :

a  Risnot symmetric, since(2,3)e R, but(3,2)¢ R,
b) Risnot asymmetric since (3,3) e R
C) Risantisymmetric sinceif a=b either
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(ab)gR or (ba)eR
223, (32)¢R
3%4 (34)¢R
4%5 (54)¢R
5#2 (25)¢R

Example 3.24 . Determine whether the relation R on a set A is reflenive,
irreflenire, symmetric, asymmetric antisymmetric or transitive.

) A = set of all positiveintegers, aR biff [a—b/<2 .
[Dec - 02, Nov.-06, May - 07]

Solution :

1) Risreflexive because a—a|=0<2, VaeA

2) R is not irreflexive because [1-1=0<2 for 1€ A (.. A is the set

of al positive integers.)

3) Rissymmetric because |a—b|<2=>|b-a/<2 ..aRb=bRa

4) R is not asymmetric because [5—4|< 2 and we have [4—5/< 2
.5R4=4R5

5) R is not antisymmetric because 1R2 & 2R1 1R2=[1-2<2 &
2R1=>[2-1<2. But 1=2

6)  Risnottransitivebecause5R4,4R2but5 R 2
1)) A=Z", aRbiff |a-b/=2 [May - 05]

Solution :
As per above example we can prove that R is not reflexive, R is
irrflexive, symmetric, not asymmetric, not antisymmetric & not transitive

)y LetA={123 4} and R{(1,1), (2,2), (3,3)} [Dec. - 04]
1)  Risnot reflexive because (4,4) ¢ R

2) Risnot irreflexive because (1,1) ¢ R

3) R is symmetric because whenever aR bthenb R a

4) R is not asymmetric because |R|= |R

5) Risantisymmetric because 2R2,2R2=2=2

6) Ristransitive.

IV) Let A=Z",aRbiff GCD (a b) = 1 we can say that aand b are
relatively prime. [Apr. 04, Nov. 05]

1) Risnot reflexive because (3,3) 1 itis3. .(3,3)¢ R
2) Risnot irreflexive because (1, 1) = 1
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3) R is symmetric becausefor(a,b)=1=(b,a)=1. .aRb—>bRa
4) R is not asymmetric because (a, b) = 1 then (b, @ = 1
.aRb—>bRa
5) R isnot antisymmetric because2 R3and 3R 2 but 2= 3.
6) R is not transitive because 4 R 3, 3 R 2 but 4 R 2 because
(42)=G.CD.(42) = 2#1.

V)  A=ZaRbiff a<b+1[May 03, May 06]

1) Risreflexivebecause a<a+1-ac|A.

2) Risnot irreflexive because 0<0+1 for O A.

3) R isnot symmetric because for 2<5+1 doesnot imply 5<2+1.
4) R isnot asymmetric because for (2,3) € Rand aso (3,2) eR.

5) R isnot antisymmetric because5R4and4R5but 4=5.

6) R isnot transitive because (6,45) € R, (5,4) € Rbut (6,47) ¢ R.

3.9 RELATIONSAND PARTITION:

In this section, we shall know what partitions are and its
relationship with equivalence relations.

Definition 3.8.1: A partition or a quotient set of a non-empty set A is a
collection P of non-empty sets of A, such that
(i) Each element of A belongsto one of the setsin P.
(i) If Ag and A; are distinct elements of P, then
Alf'\Az = ¢
The setsin P are called the blocks or cells of the partition.

Example 3.23: Let A={1, 2, 3, 4, 5}. The following sets form a partition
of A,asA=A;u A, U Agand

AlﬁA2=(|),A1('\A3=(I), andAzﬂA3=(|).

A={1,2}; Ao={3,5}; As={4}.

Example 3.24: Let A={1, 2, 3, 4, 5, 6}. The following sets do not form a
partition of A, asA=A; U Ay U Ag but

A2 M A3 * (I)

A1={12}; A={3,5}; As={4,5,6}.

The following result showsthat if P is a partition of aset A, then P can be
used to construct an equivalence relation on A.
Theorem: Let P be a partition of a set A. Define arelation R

onAasaRbif and only if a, b belong to the same block of P
then Risan equivalence relation on A.
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Example 3.25: Consider the partition defined in Example 3.23. Then the
equivalence relation as defined from the partition is:
R={(1,1),(1,2),(2, 1).(2, 2).(3,3).(3,5), (5, 3). (5, 5), (4, 4}

Now, we shall define equivalence classes of R on aset A.

Theorem: Let R be an equivalencerelationonaset Aand leta, b € A,
thenaRbif and only if R(a) = R(b), where R(a) is defined as: R(a) = {x
e AraRx}.R(a) iscaled asrelative set of a.

Example 3.26: If we consider an example in 3.25, we observe that, R(1) =
R(2), R(3) = R(5).

Because R (1) ={1,2}, R (2) ={1,2}, R (3) ={3,5}, R(5) = {3,5}.

Earlier, we have seen that, a partition defines an equivalence relation.
Now, we shall seethat, an equivalence relation defines a partition.

Theorem: Let R be an equivalence relation on A and let P be
the collection of all distinct relative sets R(a) for a € A. Then
P is a partition of A and R is equivalence relation of this
partition.

Note: If Ris an equivalence relation on A, then sets R(a) are
called as equivaence classes of R.

Example3.27: Let A={1,2, 3,4} andR={(1, 1), (1, 2), (2, 1), (2, 2), (3,
4), (4, 3), (3, 3), (4, 4)}. We observe that R(1) = R(2) and R(3) = R(4) and
henceP ={ {1, 2},{3,4} }.

Example 3.28: Let A= Z (set of integers) and define R as

R={(a, b) € Ax A: a=b(mod 5)}. Then, we have,

R(1)={......-14, -9,4,1,6, 11, ..... }

R(2) ={.....,-13, -8,-3,2,7, 12, ..... }

REB) ={.....—12, =7,-2,3,8,13, ... }

R4) ={.....—11, -6,-1,4,9,14, ..... }

R(5) ={......,.-10, -5, 0, 5, 10, 15, ..... }.

R(1), R(2), R(3), R(4) and R(5) form partition on Z with respect to given
equivalence relation.

3.10 UNIT END EXERCI SE:

1. Show that we can have A~ B= A n C, without B=C.
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. Provethat (AUB)\(AnB)=(A\B)u (B\A). (Notethat, this can
be used as a definition of A ® B)

. Determine whether or not each of the following is a partition of the set
N of natural numbers.
a[{n:n>5},{n:n<5}]
b[{n:n>5}{0},{1 2, 3 4,5}]
c[{n:n?>11},{n:n*<11}]

. SupposeN={1, 2,3, ..., } isauniversal set and
A={x:x<6},B={x:4<x<6},
C={1,357,9,D={235,7,8}
Find(i)A®B (ii) B®&C (iii)An(B®D)
(ivy(AnB)®(AnD)

. Let A={1,2 34,6} and Rbethereation on A defined by “x divides
y’, writtenan x| y.

a. Write Rasaset of ordered pairs.

b. Draw adirected graph of R.

c. Write down the matrix of relation R.

d. Findtheinversereation R of R and describe it in words.

. Givean exampleof relations A= {1, 2, 3} having the stated property.
a  Risboth symmetric and antisymmetric

b. Risnether symmetric nor antisymmetric

c. Ristransitivebut RuU R isnot transitive.

. Let A be a set of non-zero integers and let = be the relation on A x A
defined by (a, b) = (c, d), whenever ad = bc. Prove that = is an
equivalence relation.

. Provethat if Risan equivalence relation on aset A, then R ' isalso an
equivalence relation on A.
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PARTIAL ORDER RELATION

Unit Structure

4.0 Objectives

4.1 Introduction

4.2 Diagrammatic Representation of partial order relations and posets
4.3 Maximal, minimal elements and Lattices

4.4 Solved Problems

4.0 OBJECTIVES:

e Definition and examples of partial order relation.
e Representation of posets using Hasse diagram.
e Definition of aLattice.

4.1 INTRODUCTION:

We often use relation to describe certain ordering on the sets. For
example, lexicographica ordering is used for dictionary as well as phone
directory. We schedule certain jobs as per certain ordering, such as
priority. Ordering of numbers may be in the increasing order.

In the previous chapter, we have discussed various properties
(reflexive etc) of relation. In this chapter we use these to define ordering
of the sets.

Definition 4.1.1: A relation R on the set A is said to be partial order
relation, if it isreflexive, anti-symmetric and transitive.

Before we proceed further, we shall have a look at a few examples of
partial order relations.

Example 4.1: Let A = {a, b, ¢, d, €. Relation R, represented using
following matrix isa partial order relation.
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O O O O -
O O O k- -
O O Fr kL K
O R P Rk R
L

Observe the reflexive, anti-symmetric and transitive properties of
the relation from the matrix.

Example 4.2: Let A be a set of natura numbers and relation R be “less
than or equal to relation (<)”. Then Ris a partia order relation on A. For
any m, n, k € N, n < n (reflexive); if m<nand m>n, then m=n
(anti-symmetric); lastly, if m<nand n <k, then m <Kk (transitive).

Definition 4.1.2: If Risapartia order relation on aset A, then Ais called
as partial order set and it is denoted with (A, R). Typically this set is
termed as poset and the pair is denoted with (A, <).

42 DIAGRAMMATIC REPRESENTATION OF
PARTIAL ORDER RELATIONSAND POSETS:

In the previous chapter, we have seen the diagraph of arelation. In
this section, we use the diagraphs of the partial order relations, to represent
the relationsin avery suitable way known as Hasse diagram.

We understand the Hasse diagrame, using following example.

Example 4.3: Let A={a, b, ¢, d, e} and the following diagram represents
the diagraph of the partial order relation on A.

Fig. 4.1
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Now, we shal draw Hasse diagram from the above diagrams using
following rules.
(i) Drop thereflexive loops

Fig. 4.2

(if) Drop transitive lines

)

Fig. 4.3

(iii)Drop arrows

C )
®

Fig. 4.4
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Note 4.1: In many cases, when the graphical representation is so oriented that all
the arrow heads point in one direction (upward, downward, |eft to right or right to
left). A graphical representation

in which al the arrowheads point upwards, is known as Hasse diagram.

Example4.4: Let A={1, 2, 3,4, 6,9} and relation Rdefined on Abe*“a
dividesb’. Hasse diagram for thisrelation is as follows:

Note 4.2: The reader is advised to verify that thisrelation isindeed a partial order
relation. Further,

arrive at the following Hasse diagram from the diagraph of arelation as per the
rules defined earlier.

2 @

(1

Fig.4.5

Example 4.5 : Determine the Hasse diagram of the relation on
A ={1,2,3,4,5} whose Mg is given below :

<
py)
Il
O O o o~
o o ok O
o © P L
o - Ll N
I |
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Solution :

Reflexivity is represented by 1 a diagonal place. So after
removing reflexivity R is R = {(1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (34),
(3.5}

Remove transitivity as

(13)(3,4)eR ..remove (1,4)eR
(2,3)(35)eR ..remove (2,5)e R and so on.
3

~R={(13).(23).(34),(35)

The Hasse Diagram is

OO,
(X)
OO

Example4.6:

Determine matrix of partial order whose Hasse diagram is given as
follow -
Solution :

HereA =[1, 2, 3, 4,5)

Write dl ordered pairs (a, @) -+ ac A i.e. relationisreflexive.
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Then write all ordered pairs in upward direction. As (1, 2) eR &
(24) eR=(1,4)eR sinceRistransitive.

»R={(11).(2.2),(33).(44).(55).(1.2). (24). (2.4). (14). (1.3). (35). (1.5)}

The matrix Mg can be written as -
1 1 1 1 1]

0

o O O ©o
o o o+

1
0
1
0

o o <
[ RN

Now, we shall have alook at certain terms with reference to posets.

Definition 4.2.1: Let (A, <) be a partially ordered set. Elements a, b € A,
are said to be comparable, if a<borb<a.

E.g. In example 4.4, 2 and 4 are comparable, whereas 4 and 9 are not
comparable.

Definition 4.2.2: Let (A, <) be a partially ordered set. A subset of A is
said to be achain if every two elements in the subset are related.

Example 4.7: In the poset of example 4.4, subsets {1, 2, 4}; {1, 3, 6};
{1,2,6} and{1, 3, 9} arechains.

Definition 4.2.3: A subset of aposet A issaid to be anti-chain, if no two
elements of it are related.

Example 4.8: In the poset of example 4.4, subsets{2, 9}; {3, 4}; {4, 6, 9}
are anti-chains.

Definition 4.2.4: A partially ordered set A is said to be totally ordered if it
ischain.

Example4.9: Let A={2,3,5,7, 11, 13, 17, 19} and the relation defined
on A be <. Then poset (A, <) isachain.

43 MAXIMAL, MINIMAL ELEMENTS AND
LATTICES:

In this section, we discuss certain element types in the poset and hence a
specia kind of poset, Lattice.

To understand these types, we shall refer to the following figures, i.e.
Fig.4.6 and Fig.4.7.
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€ h ~
f
b
(o
a
€
Fig. 4.7

Fig. 4.6

Definition 4.3.1: Let (A, <) be a poset. An dlement a € A is cdled a
maximal element, if fornob € A,a=b,a<b. E.g.InFig. 4.6,j andk are
maximal elements.

Definition 4.3.2: Let (A, <) be a poset. An element a € A is cdled a
minimal element, if fornob e A,a=b,b<a. E.g. InFig. 46,a bande
are minimal e ements.

Definition 4.3.3: Let a, b be two elements in the poset (A, <). An element
C € A, issaid to be an upper bound of a, bif a<cand b <c. E.g. In Fig
4.7, f, h are upper bounds of b and d.

Definition 4.3.4: Let a, b be two elements in the poset (A, <). An element
C e A issaidto bealeast upper bound of a,bifa<candb<candifdis

an upper bound of a, b, thenc < d. E.g. In Fig 2.7, f isaleast upper bound
of band d.

Definition 4.3.5: Let a, b be two elements in the poset (A, <). An element
c € A issaid to be alower bound of a, bif c<aand c<b. E.g. In Fig
4.6, f, g are lower bounds of hand .

Definition 4.3.6: Let a, b be two elements in the poset (A, <). An element
c € A issaid to be agreatest lower bound of a, bif c<aand c<bandif
disalower bound of a, b, thend < c. E.g. In Fig 4.7, c is a greatest lower
bound of eand g.

Definition 4.3.7: A poset (A, <) is said to be a lattice, if every two
elementsin A have a unique least upper bound and a unique greatest lower
bound.

E.g. Fig. 4.6 is not alattice, because j and k are two least upper bounds of
handi, whereas Fig. 4.7 isalattice.
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4.4 SOLVED PROBLEMS:

Problem 4.1: Let (S, R) be aposet. Show that (S, R™) is also a poset.
(S RY) iscalled as dual poset of (S, R).

Solution:
(i) Since a R a (partial order relation is reflexive), a R* a. (R ™ is
reflexive).
(i) Leta,b e S, wherea=b. IfaRb, bR"a.

a Rb = bR a(patia order relaion is anti-symmetric) =

a)zf_lb.

Thus, bR'a=a R™*b (R isanti-symmetric).

(iiflfaRb=bR ™ aandbRc= cR™b; by transitivity of partia
order relation, we havea Rc. HencecR ™ a.
Thus,cR™bandbR™a= cR™a. (R istransitive).

From (i), (i) and (iii), R isa partial order relation.

Problem 4.2: Find dua of the following posets.
() (0,1, 2}, R, whereR={(0,0), (1,2), (2, 2), (1, 0), (2, 1), (2, 0)}.
R*={(0,0),(1,1),(22,(0,1),(12),(0 2}

(i) (Z, =) (That is greater than or equa to relation on the set of
integers).
Dua is(Z, <).

@iii)(Z, | ). (That is divisibility relation on the set of integers, i.e. a
divides b)
Dudl is (Z, isdivisible by).

Problem 4.3: Which of the following pairs are comparable in the poset

" ).
(@ 5,15 (b) 6,9 (c 816 (d) 7,7

Solution: All except for (b).
Problem 4.4: Find two incomparable elements in the posets

@ (P{0, 1, 2}), <) (where P({0, 1, 2}) is poset of {0, 1, 2})
(b) (1,2, 4,6,8}, )

Solution:
@ () {Otand{1} (i) {0,1} and{1,2}
(b) () 4,6 (i) 6, 8

Problem 4.5: Draw Hasse diagrams for the following relations.
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() (0,1,2 34,5}, >) (Notethat it formsachain)
0

(i) {1,2,3,4,56},1)

Problem 4.6: Determine whether the poset represented by the following
Hasse diagrams, is a lattice. Justify your answer.

d

Solution: Given poset is a lattice, as every pair of elements has a unique
least upper bound and unique greatest lower bound.

Now it is the time to check the understanding of the partial order relation.
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Exercise

1. Define following terms with a suitable example in each of the
following case.
(i) Partial ordering relation (Apr. 04)
(i) Comparable elements
(iii) Total ordering relation
(iv) Hasse Diagram (Apr. 04)

2. Which of these relations on {0, 1, 2, 3} are partid ordering?
Determine the properties of apartia ordering that the others lack.

() {(0,0),(1,1),(22),(3,3)}
(i) {(0,0),(1,1),(20),(22),(23),(32), (3, 3)}
(iti) {(0,0),(1,1), (1 2),(13),(20),(22),(273),(3,0), (3, 3)}

(iv) {(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(20),
(2,2),(3,3)}
v) {(6.0).(01),(12),(02),(1,1),(1,2),(23),(1,3)}
3. Determine whether the following relations, represented by a
relation matrix or a diagraph, are partial ordering relations. Justify

your answer.
(ii) {

~
=
P, O O B
P O L O
o R R R
= = O O
=
O r O
= O O
N——

Q
\ 4
O
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. Draw the Hasse diagram for each of the following relations.

() P={0,1, 2, 3, 4,5} andrelation R: greater than or equal to
@iy P={1,23,4,5,6,7,8} andrelation R: divisibility

(i) P={1,2, 3,6, 12, 24, 36, 48} and relation R: divisibility
(iv) P=Power setof S, whereS={a b, c,d} andrelation R:

. Find matrix of partial order whose Hasse diagram is

. With reference to partial ordering relation, define following terms
with a suitable example for each of them.

(i) Cover (i) Upper Bound (i) Least Upper
Bound (iv) Lower bound  (v) Greatest lower bound

. With reference to the Hasse diagram (Fig. 1.1), answer the
following questions.

INVZ

]
i g
h
d f
\-e
a b 'C

() Find the maximal el ements.

(i) Find the minimal elements.

(iii)  Isthere agreatest e ement?

(iv) Istherealeast element?

(v) Find all upper bounds of {&, b, c}.

(vi)  Find least upper bound of {a, b, ¢}, if exists.
(vii)  Find al lower bounds of {f, g, h}.

(viii) Find greatest lower bound of {f, g, h}, if exists.
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8. Define aLattice and illustrate with a suitable example.
9. Determine whether the following are lattices. Justify your answer.

0] P={1,3,6,9, 12}; relation R: Divisibility
(i) P: Set of al divisors of 70; relation R: Divisibility
(i) (2, =)

10. Determine whether the posets represented by the following Hasse
diagrams, are lattices. Justify your answer.

(i)
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(iii)

a b

11. Prerequisites in the college for various subjects are one of the
partial ordering relations. We say A << B, if course A is a
prerequisite of course B. Consider the mathematics courses and
thelr prerequisites given below and draw a Hasse diagram based on
it. Decide whether given relation is Lattice.

Course Prerequisite

Math 101 None

Math 201 Math 101

Math 250 Math 101

Math 251 Math 250

Math 340 Math 201

Math 341 Math 340

Math 450 Math 101, Math 250
Math 500 Math 450, Math 251
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RECURRENCE RELATION

Unit Structure

5.0 Objectives

5.1 Introduction

5.2 Formulation of Recurrence Relation
5.3 Methods of solving recurrence relation
5.4 Unit End Exercises

5.0 OBJECTIVES:

Definition and examples of recurrence relation.
Formulation of recurrence relation.

Solving recurrence rel ations using backtracking method.
Solving homogeneous linear recurrence relation

Solving non-homogeneous linear recurrence relation

agrwbdpE

5.1 INTRODUCTION:

We are familiar with some problem solving techniques for
counting, such as principles for addition, multiplication, permutations,
combinations etc. But there are some problems which cannot be solved or
very tedious to solve, using these techniques. In some such problems, the
problems can be represented in the form of some relation and can be
solved accordingly. We shall discuss some such examples before
proceeding further.

Example5.1: The number of bacteria, double every hour, then what will
be the population of the bacteria after 10 hours? Here we can represent
number of bacteria at the n™ hour be a,,. Then, we can say that a, = 2a,1.

Example 5.2: Our usual compound interest problems are exampl es of
such representation. That is, |, = P(1+ ﬁj — P, wherePisprincipal, r

israte of interest, nis period in yearsand |, isinterest at the end of n
year.
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Example 5.3: Towers of Hanoi is a popular puzzle. There are three pegs
mounted on a board, together with disks of different sizes. Initially, these
discs are placed on the first peg in order of different sizes, with the largest
disc at the bottom and the smallest at the top. The task is to move the discs
from the first peg to the third peg using the middle peg as auxiliary. The
rules of the puzzle are:

e Only one disc can be moved at atime.

e Nodisc can be placed on the top of asmaller disc.

Thisis a popular puzzle and we shall discuss its solution, using the one of
the techniques discussed in this chapter.
With these illustrations, we define recurrence relation now.

Definition5.1.1: A recurrence relation for the sequence {a,} is an
equation, that expresses a,, in terms of one or more of the previous terms

of the sequence, namely, ao, @i, ..., a1, for al integers n with n > n,
where ny is a nonnegative integer.

Example5.4: a, = 1.06a,_1, with ap = 0.5.
Example5.5: a,=2a,1+ 5, withay=1.

The term ap, given in the above two examples, specify initial condition to
solve the recurrence relation completely.

5.2FORMULATION OF RECURRENCE RELATION:

Before we proceed with discussing various methods of solving
recurrence relation, we shall formulate some recurrence relation. The first
example of formulation that we discuss is the problem of Tower of Hanoi
that is Example 5.3 above.

Example 5.6: With reference to Example 5.3, let H,, denote the number of
moves required to solve the puzzle with n discs. Let us define H,
recursively.

Solution: Clearly, H; = 1.
Consider top (n—1) discs. We can move these discs to the middle peg using

Hna moves. The n™ disc on the first peg can then moved to the third peg.
Finally, (1) discs from the middle peg can be moved to the third peg

with first peg as auxiliary in Hy; moves. Thus, tota number of moves
needed to move n discs are: H, = 2H,,; + 1. Hence the recurrence relation
for the Tower of Hanoi is:

Hho=1 ifn=1

Hh=2H1 +1 otherwise.
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Example5.7: Find recurrence relation and initial condition for the number
of bit strings of length n that do not have two consecutive Os.

Solution: Let a, denote the number of bit strings of length n that do not
contain two consecutive 0s. Number of bit strings of length one that
follow the necessary rule are: string O and string 1. Thus, a; = 2. The
number of bit strings of length 2 is: string 01, 10 and 11. Thus, a; = 3.
Now we shall consider the case n > 3. The bit strings of length n that do
not have two consecutive Os are precisely those strings length n—1 with no
consecutive Os aong with a 1 added 1 at the end of it (which is a4 in
number) and bit strings of length n—2 with no consecutive Os with a 10
added at the end of it (which is a,> in number). Thus, the recurrence
relationis:

an=an1+an forn>3witha; =2anda, = 3.

53 METHODS OF SOLVING RECURRENCE
RELATION:

Now, in this section we shall discuss a few methods of solving
recurrence relation and hence solve the relations that we have formulated
in the previous section.

5.3.1 Backtracking Method:

This is the most intuitive way of solving a recurrence relation. In
this method, we substitute for every term in the sequence in the form of

previous term (i.e. a, in the form of an-1, a1 in the form of a,» and so
on) till we reach the initia condition and then substitute for the initia
condition. To understand this better, we shal solve the recurrence
relations that we have come across earlier.

Example5.8: Solve the recurrence relation in Example 5.4.

Solution: Given recurrence relation is a, = 1.06a,_1, with ag = 0.5. From
this equation, we have a, = 1.06a, 3 = 1.06x1.06 a,» = 1.06x1.06x1.06
an-3

Proceeding this way, we have a, = (1.06)"ao. But, we know that a, = 0.5.
Thus, explicit solution to the given recurrence relation is a, = 0.5x(1.06)"
forn>0.

Example 5.9: Solve the Tower of Hanoi puzzle, using backtracking
method.

Solution: The recurrence relation, for the puzzleis:
Hh=1 ifn=1.
Hh=2H1 +1 otherwise.
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Thus, Hh = 2Hpy + 1= Hp = 2 x QHpo + 1) + 1= 2PHpp + 2+ 1 =
2?(2Hps+1)+2+1
= 2°Hp5 + 22+ 2 + 1. Proceeding this way, we have
Ho=2"H, +2"2 + 23+ 2+ |+ 1
=2+ 2" MMy 4 (Hi=1)

=2"_1.

Example 5.10: Find the recurrence relation to count the number of regions
created by n lines in a plane, such that each pair of lines has exactly one
point of intersection. Solve this recurrence relation.

Solution: Let r be the number of regions created by n lines following the
condition mentioned in the example. If the number of lines is 1, then
obvioudly, r; = 2. If number of lines is 2, then r, = 4. Now, we shall
assume that there are n—1 lines satisfying the condition mentioned. Then
the number of regions created by these lines is r;. If we add one more
line, that interest each of these line exactly once then n more regions are

created as follows:
\ n" line

\\/\

n-1lines

Then, as we observe from above diagram, if n" line intersects all n-1
lines, then new n regions are created. Thus, the recurrencerelation is:

f="rna+n withry =2

To solve this equation, we shall use the backtracking method.
Mm=rpatn=(Cp+tn=-1)+n=..=r;+2+3+..+n
n(n+1)

=1+2+3+.+n+1=1+

5.3.2 Method for solving linear homogeneous recurrence relations
with constant coefficients:

In the previous subsection, we have seen a backtracking method
for solving recurrence relation. However, not all the equations can be
solved easily using this method (such as Example 5.7). In this subsection,
we shall discuss the method of solving a type of recurrence relation called
linear homogeneous recurrence relation. Before that we shall define this
class of recurrence relation.
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Definition 5.3.1: A linear homogeneous recurrence relation of degree k
with constant coefficients is a recurrence relation of the form:

a,=ca,,+ca, ,+-+ca,,, wherec, cy, ..., ¢, are constant real
numbers with ¢, = 0.

Example 5.11: Example 5.7 is a linear homogeneous recurrence relation
of degree 2.

Example 5.12: Fibonacci sequence is also an example of a linear
homogeneous recurrence relation of degree 2.
Example5.13: The recurrence relation a, =a,_, +a>_,isnot linear (due to

square term), whereas the relation H, = 2H,4 + 1 is not homogeneous
(due to constant 1).

The basic approach for solving a linear homogeneous recurrence
relation to look for the solution of the form a, = r", where r is constant.

Note that, r" is a solution to the linear homogeneous recurrence relation of
degreek, if and only if;

r"=c " +c,r"? +---+¢r" . When both the sides of the equation are

divided by " and right side is subtracted from the left side, we obtain an
equation, known as characteristic equation of the recurrence relation as
follows:

rk—cr*t—c,r*?—...-¢_r—c, =0.

The solutions of the equation are called as characteristic roots of
the recurrence relation.

In this subsection, we shall focus on solving linear homogeneous
recurrence relation of degree 2 that is: a, = C1an1 + Coano.

The characteristic equation of this relation isr? — c;r — ¢, = 0. Thisisa
guadratic equation and has two roots. Two cases arise.

(i) Roots are distinct, say s; and . Then, it can be shown that
a, =us +Vvs,is a solution to the recurrence relation, with

a, =Us +Vs, and a, = Us’ +Vs;.

(ii) Roots are equal, say s. Then it can be shown that a, = (u+vn)s"is
asolution to the recurrence rel ation.

We shall use above results to solve some problems.
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Example 5.14: Solve the recurrence relation b, + 3b,; + 2b,» = 0, with
b;= —2and b, = 4.

Solution: The characteristic equation to the given recurrence relation is X°
+ 3x + 2 = 0. Roots of this equation ares; = — 2 and s, = — 1. Hence the
solution to therelation is:

by = u(=1)" + v(-2)" by = —2=—u—2vand b, = 4 = u + 4v. Solving these
two equations simultaneously, we get, u = 0 and v = 1. Thus, explicit
solution to the given recurrence relation is b, = (-2)"

5.3.3 Method for solving linear non-homogeneousrecurrencerelations
with constant coefficients:

In the previous subsection, we have seen a way of solving linear
homogeneous recurrence relation. In this subsection, we shall discuss
method of solving linear non-homogeneous recurrence relation with
constant coefficient, i.e. relation of the form:
a,=ca,, +ca, ,+-+ca,, +F(n), whereF(n) isafunction of nand
not equal to zero.

The equation, a,=ca,,+c,a,,+--+ca, ,, is caled associated
homogeneous recurrence relation.

Example 5.15: Equations a, = a1 + 2" an=ap1taot n+n+1, an=
3ap1 + 3" and ap = apg + Ano + Ang + NI, are examples of linear non-
homogeneous recurrence relations with constant coefficients and a,, = a1,

8n = a8p1+ an2 an = 3ap1and a, = ap1 + An2 + an3 are associated linear
homogeneous recurrence relations respectively.

The key fact about linear non-homogeneous recurrence relations
with constant coefficient is that every solution is the sum of a particular
solution and a solution associated linear homogeneous recurrence relation.
Thus, to put it shortly

If {a®}is a particular solution of the non-homogeneous linear
recurrence relation with constant coefficients,
a,=ca,,+ca, ,+-+ca,, +F(n), then every solution of the form
{al” +a™}, where {a™}is a solution of associated homogeneous
recurrencerelation a, =ca, , +C,a, , +---+Ca, -

Though, there are no hard and fast rules for finding particular
solution, depending upon the F(n), there are certain guidelines for
choosing a particular solution form and hence finding a particular solution.
These can be understood from the following theorem.
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Theorem: Suppose {a,} satisfiesthe linear non-homogeneous recurrence
relation

a,=ca, ,+ca, ,+-+ca,, +F(n),wherec,cy ..., ccarered
numbers and

F(n)= (b, +bn+---+b_n""+hn')s", where by, by, ...., by and sare real
numbers. When sis not aroot of the characteristic equation of the
associated homogeneous recurrence relation, there is a particular solution
of theform: (p, + p,n+---+ p_,n""+ p,n‘)s"

When sisaroot of the characteristic equation and its multiplicity ism,
thereis aparticular solution of the form:

nm( Po+ PN+t pt—lnt_l + ptnt)sn

Example 5.16: Solve the recurrence relation a, — 7a,-1 + 10a, 2 = 3" with
ap=0anda; = 1.

Solution: Associated homogeneous relation is. a, — 7a,-1 + 10a,, = 0.
Characteristic equation for this relation is x> — 7x + 10 = 0. Roots are: 2, 5

and hence solution to the homogeneous equation isa,=u2" +v5".
ap=0O=u+vanda, =71=2u+5v On solving these equations

simultaneously, we get, u:% and v:%l. Thus, solution to the

associated relation is: a” =%( "_5"). From the given table, particular
solution is of the form p3" and hence we have to determine the value of p.
Hence, we have, 3" -7.3"7 +10.3"°2 = p3"

Solving for p, weget p= g Thus, particular solution is

4 . : .
al? = 3 3" = 4.3"". Solution to the given recurrence relation is

a +alP :%(2n —5")+4.3"

Example 5.17: Find al the solutions of the recurrence relation a, = 3a,1
+ 2n. What isits solution when a; = 1?

Solution: Associated homogeneous equation is a, = 3a,1 and its
characteristic equation is x* — 3x = 0. The roots are 0 and 3 and hence

solutioniis a, =uo" +u3" =v3". Thus, a™=v3".

Now, we shall find its particular solution. As F(n) is a polynomial of
degree 1, particular solution is of the form pn + g. Hence the recurrence

relation becomes pn + q = 3a,1 + 2n.
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Thatis, pn+qg=3[p(h-1) +g] +2n.Orpn+qg=3pn—3p+ 3q + 2n,
i.e2pn+2q-3p=-2n.0r2p=-2,p=-1,20-3p=0i.e 20g=-3q=—
3/2. Thus, we have,

al? =—n—§. Hence, solution to given relation is: v.3" —n—g. To find
solution, if a; = 1, we substitute n = 1, in its solution. Thus,
a = 1=v.31—1—g. Thisgivesv = %

: : . 7 3
Hence solution to given recurrencerelationis a, = (EJBH -n—=.

2

Example 5.18: What form does a particular solution of the linear non-
homogeneous recurrence relation a, = 6a,,_, —9a,_, + F(n) have, when,

F(n)=3", F(n)=n3", F(n)=n*2"and F(n)=(n*+1)3".

Solution: The associated linear homogeneous recurrence relation is,
a,=6a, ,-9, ,.

Its characteristic equation is X* — 6x + 9 = 0. The roots are 3,3.
Hence solution is ap = (u + vn)3". To apply previous theorem, we should
check the function F(n).

For, F(n)=n?2", root is 3 and 2 is not a root and hence particular
solution is of the form:

(Po + pin + pn?)3". In rest of the cases we have to consider the
multiplicity of the root. Thus, for F(n)=3", particular solution is of the
form: pn?3". For F(n)=n3", particular solution is of the form:
n’(p, + p,n)3". For F(n)=(n*+1)3", particular solution is of the form:
n*(po + PN+ p,n*)3",

5.4 UNIT END EXERCISE:

1. Hemant deposits Rs. 10,000 in a saving account at bank. The annual
interest rate of bank is 9% that is compounded. Define a recurrence
relation to compute the amount A, his account at the end of n" year
assuming that he does not withdraw money in between.

2. Let T(n) denote the time required to search among n e ements. Assume
that nispower of 2. Let T(n) = T(n/2) if n>2and T(1) = 1. Find
explicit formulafor T(n).
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. Solve the following recurrence relation (known as ‘handshake’
problem):
Ho=Hy,1+(n-1), n>2,and H; = 0.

. Solve the homogeneous recurrence relation t, = 5tp_3 — 6t,», Subject to
theinitial conditionsty = 7 and t; = 16.

. Let A={0,1}. Formulate recurrence relation to count number of
strings that do not contain a sequence 111.

. Solve following non-homogeneous recurrence relations
0] an—8a,1 + 15a, 2= 3"withay=0,a; = 1.
(i) an=2a,1+32"

(i) a,=2a,1+n+5withay=4.



97

GROUPS AND APPLICATION

[Syllabus Groups and Applications : Monoids, Semigroups, Product and
guotients of algebraic structures, Isomerism, homomorphism,
automorphism, Normal subgroups]

Unit Structure
6.0 Objectives
6.1 Introduction

6.2  Binary Operation

6.3  Semigroup

6.4  Identity Element

6.5 Group

6.6  Subsemigroup

6.7  Products and Quotients of Semigroups

6.8  Homomorphism, Isomorphism and Automorphism of Semigroups
6.9  Homomorphism, Isomorphism and Automornhism of Monoids
6.10 Homomorphism, Isomorphism and Automorphism of Groups
6.11 Coset and Norma Subgroup

6.12 Unit End Exercises

7.0 OBJECTIVES.

To present the concepts of :

Group, semigroup, products & quotients of semigroups.
Hornomorphism, Isornorphism & automorphism of semigroups,
monoids & Groups.

Coset & Normal subgroup.

7.1

INTRODUCTION:

In this chapter, we will study, binary operation as a function, and

two more algebraic structures, semigroups and groups. They are called an
algebraic structure because the operations on the set define a structure on
the elements of that set. We aso define the notion of a hornomorphism
and product and quotients of groups and semigroup.
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6.2 BINARY OPERATION

A binary operation on a set A is an everywhere defined function
f: Ax A— AGenerally operation is defined by = If = is binary operation
on A then axbe Ava,be A

Properties of binary operation : - Let * be abinary operation on aset A,
Then = satisfies the following propertiesfor any a, band cin A

1. a=a*a Identity property
2. ax*b=b=xa Commutative property
3. ax(b*c)=(a*b)*c Associative property

6.3 SEMIGROUP

A non-empty set S together with a binary operation * iscalled asa
semigroup if —

i) binary operation * isclosed

i) binary operation * is associative

we denote the semigroup by (S, *)

Commutative Semigroup :- A semigroup (S, #*) is sad to be
commutativeif * iscommutativei.e. a*b=b*a VvVae$S
Examples: 1) (z, +) isacommutative semigroup

2) The set P(S), where S is a set, together with
operation of union is a commutative semigroup.

3) (Z,-) isnot asemigroup
The operation subtraction is not associative

6.4 IDENTITY ELEMENT :

An element e of asemigroup (S, *) is called an identity element if
exra=ax*e=a Yae$S

Monoid A non-empty set M together with a binary operation *defined on
it, is called asamonoid if —

i) binary operation * isclosed

i) binary operation * is associative and

i) (M, *) has an identity.

i.e. A monoid isasemi group that has an identity
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6.5 GROUP

A a non-empty set G together with a binary operation * defined on it is
caled agroup if

() binary operation * is close,

(i)  binary operation * is associative,

@iii) (G, *) hasan identity,

(iv) everyeementinG hasinversein G,

We denote the group by (G, *)

Commutative (Abelian Group : A group (G, *) is said to be
commutativeif = iscommutative. i.e. a*b=b*a Va,beG.

Cyclic Group : If every element of a group can be expressed as some
powers of an element of the group, then that group is called as cyclic

group.

The element is called as generator of the group.

If Gisagroup and aisits generator then we write G=<a>

For example consider G={1,-1i,-i}. G is a group under the binary
operation of multiplication. Note thatG=<i>. Because

a={ii",i%,i*} = {i,-1-i1}

6.6 SUBSEMIGROUP:

Let (S, *) be asemigroup and let T be a subset of S. If T is closed under
operation =, then (T, =) is called a subsemigroup of (S, *).

Submonoid : Let (S, *) be amonoid with identity e, and let T be a non-
empty subset of S. If T is closed under the operation * and e € T, then (T,
) is called a submonoid of (S, *).

Subgroup : Let (G, *) be agroup. A subset H of G is caled as subgroup
of Gif (H, *) itself isagroup.

Necessary and Sufficient Condition for subgroup : Let (G; =) be a

group. A subset H of G is a subgroup of G if and only if axbleH
va,beH



100

6.7 PERMUTATION

Definition : A permutation on n symbols is a bijective function of the set
A={1,2,..n}onto itself. The set of al permutations on n symbols is

denoted by S,. If ais a permutation on n symbols, then o, is completely
determined by its values a.(1),a(2).....o(n). We use following notation

1 2 3 .. n
t°de”°te°‘£a(1) (1) a(3)... a(n)J'
12345

531 2 4
(1,2,34,5). o maps1to5,2to3,3t01,4to2and5to 4.

For example o ( ) denotes the permutation on the 5 symbols

Product of permutation : - Let A ={1,2,3,4}
1234 1234

Let o and B .
3241 43 21

123 4)\(12 34 1234
Then a OB = =
3241)43 21 231 4

Cycle - an element a.cs,, is caled a cycle of lingth r if 3 r symbols

iy i in(iy) =i, o (ip) =iz ... a(in ) =1y

Example: Consider following permutation

234165
oc(l 23 4}[5 6}:(1 2 3 4)(5 6)
23 41)\65

Transposition :

123456
i) oc( j It can be expressed as a product of cycles -

A cycle of length two is called transposition.

For example following permutation can be expressed as a product
of transpositions.

a(1837)(25)(46)
~a(18)(13)(17)(25)(46)
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Even (odd) Permutation -

Let A {1, 2, ....n). A permutation o €S, iseven or odd according

to whether it can be expressed as the product of an even number of
transpositions or the product of an odd number of transpositions
respectively.

For example we can consider following permutation :

a=(145)(23)
a=(14)(15)(2 3)
= 0dd no. of transpositions so o is odd permutation

Example 1 : Show that * defined as x*y=xis abinary operation on the
set of positive integers. Show that * is not commutative but is associative.

Solution : Consider two positive integers X and y. By definition x*y=x
which is apositive integer. Hence - is a binary operation.

For commutativity : x*y=x and y*x=x. Hence x*y=y=xin genera
. * isnot commutative.

But X*(y*2)=X*y=X and (X*y)*z=X*Z=X. Hence
X*(y*2z)=(x*y)*z. .. * isassociative

Example 2 : Let | be the set of integers and Z, be the set of equivalence
classes generated by the equivalence relation “congruent modulo m” for
any positive integer m.

a) Write the sets Z3 and Zg

b) Show that the agebraic systems (Zm, + ) and (Zm, x m) are
monoids.

C) Find the inverses of elementsin Zz and Z, with respect to +3 and x4
respectively.

Solution: &  Zsfor (Zs+3) ={[0], [1], [2]}
Zs for (Zs, +6) ={[01, [1], [2], [3], [4], [5] }
Zs for (Zs,x 3) ={[0], [1], [2]}
Zs for (Ze,x 6) = {[0], [1], [2], [3], [4], [5] }

Example 3 : Determine whether the following set together with the binary
operation is a semigroup, a monoid or neither. If it isamonoid, specify the
identity. If it is a semigroup or a monoid determine whether it is
commutative.
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)] A = set of all positive integers. a*b=max{a,b} i.e. bigger of aand
b [May-06]
i) Set S={1, 2, 3, 6, 12} where a*b=G.C.D.(a,b)
[Dec-03, May — 07]
i) Set S$={1,2,3,6,9,18) where a*b=L.C.M.(a,b) [Nov-06]
iv) Z, the set of integers, where a*b=a+b—-ab [April - 04]

V) The set of even integers E, where a*b = % [May-03]

Vi) Set of real numberswith a*b=a+b+2
vii)  Theset of al mxn matrices under the operation of addition.

Solution :
i) A =setof al positiveintegers. a*b=max{a,b}i.e. bigger of aand b.

Closure Property: Since Max {a, b} iseitheraor b .. a*xbe A. Hence
closure property is verified.

Associative Property :

Since ax* (b*c) = max{{a,b},c} = max{a,b,c}
=Max{a{b, c} } =(ab).c

. * isassociative.

- (A, =) isasemigroup.

Existence of identity : 1 € A istheidentity because
la=Max{ L,a=a VacA

- (A, =) isamonoid.

Commutative property : Since Max{a, b) = max{b, @ we have
a*b=b+*aHence * iscommutative.

Therefore A is commutative monoid.

i) Set S={ 1,2,3,6,12} where a*b=G.C.D.(a,b)
12

*

o W N P

R e

N RN RN

W W wPr Plw

OO WwWN RO
w

12 2

Closure Property : Since al the elements of the table € S, closure
property is satisfied.
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Associative Property :Since
a*(bxc)=ax=(b*c)=a*GCD{b,c} =GCD{a,b,c}

And (a*b)*c=GCD{a,b} *c=GCD{a,b,c}

~ a*(bxc)=(axb)*c

. * isassocidtive.

- (S, *) isasemigroup.

Existence of identity: From the table we observe that 12 € S is the
identity
- (S, *) isamonoid.

Commutative property : Since GCD{ab}= GCD{b,a we have
a*b=Db=*a.Hence * iscommutative.

Therefore A is commutative monoid

(iii) Set S={ 1,2,3,6,9, 18} where a*b=L.C.M. (ab)

T, 2 3 6 9 18
1 1 2 3 6 9 18
2l 2 2 6 6 18 18
3] 3 6 3 6 9 18
6| 6 6 6 6 18 18
91 9 18 9 18 9 18
18 18 18 18 18 18 18

Closure Property : Since all the elements of the table € S, closure
property is satisfied.

Associative Property : Since a*(b*c) =a*LCM{b,c} = LCM{a,b,c}
And (ax*b)*c=LCM{a,b} *c=LCM{a,b,c}

ax(bxc)=(axb)*c

* IS associative.

(S, *) isasemigroup.

Existence of identity : From the table we observe that 1 € S is the
identity.

(S,*) isamonoid.

Commutative property : Since LCM{a b} = LCM{b, a we have
a*b=Db=*a. Hence * iscommutative.
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Therefore A is commutative monoid.
(iv)  Z,theset of integerswhere-a* b=a+b-ab
ClosureProperty : - a,bez then a+b—-abez Vab so* isclosure.

Associate Property : Consider a,bez
(a*b)*c=(a+b-ab)*c
=a+b-ab+c—-(a+b-ab)c

=a+b-ab+c-ac-bc+abc
=a+b+c-ab-ac-bc+abc 2

a*(b*c)=a*(b+c-bc)
=a+b+c-bc-a(b+c—bc)
=a+b+c—-bc-ab-ac+abc (2
From1& 2
(a*b)*c=a*(b*c) Vvabcez
.. ¥ isassociative
.. (z, &) isasemigroup.

Existence of Identity : Let e be the identity element a* e=q
ate-ge=a
ate-ae=a
e(l-a=0
e=0ora=1
But a=1
E=0
.. OeZ istheidentity element.
~.(Z,*) ismonoid.

Commutative property : Va,bez
a*b=a+b-ab
=b+a-ba
=b*a
- * iscommutative
~.(Z, *) iscommutative monoid.

OeZ istheidentity

v)  E=setof evenintegers. a*b:%b
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Closure Property : Since a?b isevenforaand b even. .. a*xbe E. Hence

closure property is verified.

Associative Property : Since a*(b*c):q*(%lz%:%*c:(a*b)*c
* [Sassocidtive. ~.(E, *) isasemigroup.

Existence of identity : 2e E isthe identity because 2*a=2—2a= avaeE

~.(E, *) isamonoid.
. - ab ba .
Commutative property : Since =5 we have axb=b=*aHence * is

commutative.
.. (E,*) is commutative monoid.

(vi) -2€Aisidentity
(vii) 00 M isthe identit
€
00 y

Example 4 : State and prove right or left cancellation property for a
group.

Solution : Let (G, *) beagroup.
(1) To prove theright cancellation law i.e. a*b=c*b=a=c
Let a b, ceG. Since Gisagroup, every element hasinversein G.
. bleG
Consider a*b=c*b
Multiply both sides by b™ from the right.

(axb) b1 =(cxb)*bL

ax(bxb 1) =cx(brb1) Associative property

exa=exC b*b‘lzeeG
a=c ecG istheidentity

(i)  Toprovetheleft cancellationlaw i.e. a*xb=c*b=a=c

Let a b, ceG: Since G isagroup, every element hasinversein G.
sateG

Consider ax*b=axc
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Multiply both sides by a™ from the | eft

a_l*(a*b) =a_1*(a*c)

(a"1 *a)*b= (a"l * Q) *C Associative property

exb=exc a‘l*a:eeG

b=c ecG istheidentity

Example 5 : Prove the following results for a group G.

(i)
(i)
(iii)

The identity element is unique.
Eachain G hasuniqueinversea™
(ab -1 — b—la—l

Solution : (i) Let G be a group. Let e; and e, be two identity elements
of G.

If e isidentity dementtheneey=ee=€2 ............... (1)
If e;isidentity elementthenee;=ee1=€ ..ouvneeee. 2
From (1) and (2) we get e; = e, i.e. identity element is unique.

(i) Let G beagroup. Let b and ¢ be two inverses of acG.
If bisaninverseof athenab=ba=e............... Q)
If cisaninverseof athenac=ca=e............... 2
Where e € G bethe identity element.
From (1) and (2) we get ab = ac and ba=ca.
b=c by cancellation law : i.e. inverse of acG is unique.
inverse of a e Gisunique.

(i) LetGbeagroup.Leta b e G.

Consider (ab)(b™a™)
= abbt)a?  Associative property
= (ee)a™ bb™=e ecGisidentity
= (ae)a™* Associative property

= aa’ ae=a

= e aa'=e

Similarly we can prove (b™a™t)(ab) = e.

Hence (ab) *=bta?

Example 6 : Let G be agroup with identity e. Show that if a?=eforadla
in G, then every element isits own inverse [Nov.-05]
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Solution : Let G be agroup.
Given &= efor dl acG.
Multiply by a™* we get
ald = a'te
a=a‘'
i.e every element isits own inverse

Example 7 : Show that if every element in a group is its own inverse, then
the group must be abelian. [Dec-02] [5]

OR

Let G be a group with identity e. Show that if &= efor al ain G, then G
is abelian. [May-05]

Solution : Let G be agroup.
: For acG, a'eG
Consider (ab) ™
(ab) =b'a™ reversd law of inverse.
ab=ba every element isitsown inverse
Gisabdian.

Example8: Let Z, denote the set of integers (O, 1, .., n-1). Let ® be
binary operation on Z,, such that a®b = the remainder of ab divided by n.

i) Construct the table for the operation ® for n=4.

i) Show that (Z,, ®) isasemi-group for any n.

i) Is (Zn, ®) agroup for any n? Justify your answer.

Solution : (i) Tablefor the operation ® for n = 4.

®(0 1 2 3
0|0 0 0 O
1101 2 3
210 2 0 2
310 3 21

(i)  Toshow that (Z,, ®) isasemi-group for any n.

Closure property : Since dl the element in the table
€{0,1, ..., n-1}, closure property is satisfied.
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Assiciative property : Since multiplication modulo n is associative,
associative property is satisfied.
(Zn, ®) isasemi-group
@iii)  (Zn, ®) isnot agroup for any n.
If n=4, 27" does not exist (1eG isthe identity.)

Example 9 : Show that agroup (G, *) isabelian if and only if for a, beG,
(axb)? = a2 xb? [Nov-06]

Solution : Step-1 : Given (G, #) is a group and for a beG,
(a*b)2 —aZb%.To provethat (G, =) isabelian.
Given (axb)?=a®*b?

(axb)*(a*xb)=(a*xa)*(b=*b)

ax(b*xa)*b=a=*(a*b)*b Associative property
(bxa)*b=(axb)*b Left cancellation law
bxra=axb Right cancellation law
(G, *) isabdian.

Step-2 : Assumethat (G, *) isabelian.
To provethat a, beG, (axb)? = a2 b?

Consider (axb)?2

= (axb)=*(ax*h)

= a*(bxa)*b Associative property
= ax(axb)*b Gisabeian

= (a*a)*(b*h) Associative property
- 2* 2

Example 10 : If (G, *) be an abelian group, then for al a be G, show that
(axb)"=a" «b".

Solution : Given (G, =) is abelian. To prove that for al a beG,
(axb)" =a" xb"

We will use the method of induction. Let P(n) be the property that for all
a, beG;

(axb)" =a" xb"
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Step-| :Check that P? istrue.
(a*b)1 —alxpt
ax*b=ax*b Hence P(1) istrue.

Step-2 :Assume P(k) istrue for somekeN
(axb)K = ak »pK

Step-3: Prove P(k+1) istrue.

Consider #(axb)k+1

= (axb)K x(axb) = (@K xbK) *(axb)  using step-2

= ak (bk *a)*b Associative property
= ak « (axbK) xb G isabelian

= (ak * Q) * (bk * ) Associative property
= aktlypk+l . P(k+1)istrue.

Hence P(n) istrue for every neN

Example 11 : Let a=(1 23 4)(6 5 7) and p=(2 4 3)(7 5) be permutations
of the sat {1,2,3,.....,7}. Express o as product of transposition. Find
whether o o 3 isan even permutation or not. [Dec-99][5]

Solution : Let a=(1234)(657)
a=(14)(13)(12)(67)(65)

B 123456701234567
aof =
2 341756 142 37 6 5

1 234567
sLoe B=
2 3417656

j =(12)(56)

~.o o B isan even permutation.

1 23 456
Example12: Let A={1,2,3,4,5 6} and P = be
2 43156

permutation on A

a) Write P as a product of digoint cycles.

b) Find P,

0) Find the smallest positive integer k such that P‘=1,.
[May-02][4]
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. 1 2 3 456
Solution: Let P=

2 431656

@  P=(124(3)((0)

(by PP'=1
123456) (123456
(243156)“[123456}
. Frl=(123456j
413258
© P=
123456)1234586) (123456
(243156}(243156j_(413256j
P*=p’p=
123456\ 1234586 (123456
(413256](243156]_(123456]
Smallest k=3

Example 13 : Consider the group G = {1,2,3,4,5,6} under multiplication
modulo 7. [Apr-04, May-06]

(1) Find the multiplication table of G

(i) Find2' 3% 6™

(iii)  Find the order of the subgroups generated by 2 and 3.

(iv) IsGcyclic?

Solution : (i) Multiplication table of G
Binary operation = is multiplication modulo 7.

*1'L 2 3 4 5 6
1{1 2 3 4 5 6
2(2 4 6 1 3 5
3|3 6 251 4
414 1 5 2 6 3
5|5 3 1 6 4 2
6|6 5 4 3 21

From the table we observe that 1 G isidentity.

(i) Tofind2® 3%, 6™
Fromthetableweget 2'=4,31=56"=6
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iii) To find the order of the subgroups generated by 2.
Consider 2° = 1 = |dentity, 2' = 2; 2= 4, 2°= 1 = | dentity
<2>={2' 2% 2%
Order of the subgroup generated by 2 =3
To find the order of the subgroups generated by 3.
Consider 3° = 1 = identity, 3'=3,3°=2,3=6,3'=4,3°=5,3°=
1 = Identity
<3>={3} 3 33" 3 3%
Order of the subgroup generated by 3=6

(iv) GiscyclicbecauseG=<3>.

Example 14 : Let S={x|x is a red number and %0, x=1}. Consider the
following functionsf; : S—S,i=1,2,---,6 [Nov-05]

fl(x):x, f2(x):1—x, f3(x):§, f4(x):ﬁ, f5(x) :1—%,

X
=31
Show that G = {fy, f,, f3, f4, f5, fe) IS @ group under the operation of
composition. Give the multiplication table of G.

Solution : (i) Multiplication table of G
f, f, f

1 2 '3 f4 f5 f6
T T, Tz s s g
|, f, fo fo fy f,
folfy T, 1, f, fo fo
flfy fg fo fs f 1,
folfs fg fy T T, fg
fo|fg fs fy f3 T, T

() Closure property : Since all the elementsin the table €G, closure
property is satisfied.

(i)  Associative property : Since composition of functions is
associative, associative property is satisfied.

(ili)  Existence of identity : From the table we observe that f,€G is the
identity.

(iv)  Existence of inverse: From the table we observe that
fot=fy, fh="fy fat="fy fit="fs, fs'="fs fo'="s

i.e. every element of G hasinversein G. Hence G isagroup.
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Example 15 : Let G be an abelian group with identity e and let H = {x/x?
= e). Show that H is a subgroup of G. [May-02, 03, May-07]

Solution : Letx,yeH . x*=eandy’=e .. x‘=xandy’=y
Since G is abelian we have xy = yx .. xy ™= yx
Now (xy ™) = (xy )xy™) = (xy )y %)
(xy )% = X(y " y)x
x(e)x
= x* = e
= xy‘'eH
H is asubgroup.

Example 16 : Let G be agroup and let H = (x/xeG and xy = yx for all
yeG}. Provethat H is asubgroup of G. [98][7]

Solution : Letx,ze H .. xy=yx foreveryyeG .. x=yxy
Similarlly zy = yzforeveryyeG  .z=yzy ™

Now consider xz* = (yxy H(yzy ™)™

= yxylyzly ey ly
(x.zhy = y(xz 1) e H.

xzZte H

H isasubgroup

=
=

Example 17 : Find all subgroups of (Z,®) where @ is the operation
addition modulo 5. Justify your answer.

Solution:
@0 1 2 3 4
0]0 1 2 3 4
111 2 340
212 3 4 01
313401 2
414 0 1 2 3

Example 18 : Let G be a group of integers under the operation of
addition. Which of the following subsets of G are subgroups of G?

@ the set of al even integers,

(b) the set of all odd integers. Justify your answer.
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Solution:

a) Let H= set of al even integers.
We know, additive inverse of an even number is even and sum of
two even integersis also even. Thusfor abeH we have abeH.
Hence H is a subgroup of G.

b) Let K = set of al odd integers.
We know, additive inverse of an odd number is odd and sum of
two odd integersis even.

Thus for abeK we have ab™¢K.
Hence K is not a subgroup of G.

Example 19 : Let (G, *) be a group and H be a non-empty subset of G.
Show that (H, *) isasubgroup if for any aand bin H, ab™ isasoin H.
[May-00) [3]

Solution :
() LetaaeH . aa‘eH. ieeeH
Theidentity element € H.
(i) LeteaeH . ea‘eH. iea‘eH
Every element hasinverse € H.
(iiiy) LetabeH. - bleH . abh)teH.ieaeH.
..Closure property is satisfied.

(iv) Every elementinH isasoin G. And G is a group. So associative
property is satisfied by the elements of H. Hence associative
property is satisfied by the elements of H.

Hence H is a group. But H is a subset of G. ..H is a subgroup
of G.

Example 20 : Let H and K be subgroups of a group G. Prove that HHK is
asubgroup of G. [Dec-02] [5]

Solution : If H is a subgroups of a group G, then for any a, b € H,
ab?e H.
Similarly, if K is a subgroups of a group G, then for any a, b € K,
abteK.
Now if a be HAK,abe Handa b e K. .. & e Hand ab™ € K.
Henceab™ e HNK.

HNK isasubgroup of G.
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6.8 PRODUCTSAND QUOTIENTS OF SEMIGROUPS:

In this section we obtain new semigroups from existing
semigroups.

Theorem 6.1 :

If (S, *) and (T, *’) are semigroups, then (S x T, *”) is a semigroup,
where +” is defined by (sy,tz) *"(Sz.t2) = (S1%S,, 1, * ')

Theorem 6.2 :

If Sand T are monoids with identities es and er, respectively, then, S x T
isamonoid with identity (es, er)

Theorem 6.3 :
Let R be congruence relation on the semigroup (S, *). Consider the

relation from S/RxS/R to SR in which the ordered pair ([a], [b]) is, for a
andbin S related to [a = b].

€)] ® is a function from S'RxS/R to SR, and as usua we denote ®

([a].[b]) by [a] = [b]. Thus[a] ® [b]=[axb].
(b) (S/R, ®) isasemigroup.

Proof : Suppose that ([&],[b]) = ([@],[b’]). Then aRa and bRb’, so we
must have a*bRa *b’, since R is a congruence reation. Thus
[axb]=[a *b']; that is, ® is a function. This means that ® is a binary
operation on S/R.

Next, we must verify that ® is an associative operation. We have
[a®([b]®[c])=[a®[b*c]=[a* (b*c)]=[(axb) =] by associative property of
*inS

[axb] ® [c]
([al ® [b]) ® [c],

Hence S/R is a semigroup. We call S/R the quotient semigroup or factor
semigroup. Observe that ® is atype of “quotient binary relation” on SR
that is constructed from the origina binary relation = on S by the
congruence relation R

Example 21 : Let Z be the set of integers, and Z,, be the set of
eduivalences classes generated by the equivalence relation “congruence
modulo m” for any positive integer m.
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Zm, isagroup with operation @ where[a] @ [b] = [atb]
For Z, and Z3; defined according to the above definition, write the
multiplication table for the group Z;xZs. [May-03] [5]

Solution : The multiplication table for the group Z,xZs.

®@ | (00 01 02 1o (11,) (12
0,0 (0,00 (0,1) (0,2 (1,00 (1.1 (12
o1 (01 (0,2 ©O0 (11) (1,2 (10
0,2 (0,2 ©00 O 12 10 (11
1,09/ (1,00 (1,1 (1,2 (0,00 (01 (0,2
@yl 1y (1,2 (1,00 (01 (0,2 (0,0
12| (1,2 1,0 (11 (0,2 (0,0 (01

6.9 HOMOMORPHISM, ISOMORPHISM AND
AUTOMORPHISM OF SEMIGROUPS

Homomorphism : Let (S, *) and (T, *’) be two semigroups. An
everywhere defined function

f: ST iscalled ahomomorphism from (S, =) to (T, *") if

f(axb) =f(a) *'f(b) VvabeS

Isomorphism : Let (S, *) and (T, *') be two semigoups. A function

f: S— Tiscaled aisomorphism from (S, =) to (T, ') if

() it is one-to-one correspondencefrom Sto T (ii)  f(axb) = f (a)
*'f(b) Vabe$S

(S, *)and (T, =) areisomorphic’ isdenoted by S=T.

Automor phism : An isomorphism from a semigroup to itself is caled an
automorphism of the semigoup. An isonorptism f:s—s is caled
automorphism.

6.10 HOMOMORPHISM, LSOMORPHISM AND
AUTOMORNHISM OF MONOIDS:

Homomorphism : Let (M, *) and (M’, *’) be two monoids. An
everywhere defined functionf : M — M’ is called a homomorphism from
(M, =) to (M’, =) if

f(axb)y="f(a «'f(b) Vabe M

Isomor phism : Let (M, *) and (M’, *’) be two monoids. A function
f: M — M’ iscaled aisomorphism from (M, =) to (M’, =’) if
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() it is one-to-one correspondence from M to M’ (ii) f isonto.
@iii) f(axb=f(a ='f (b) Va beM
‘(M %) and (M’, ") areisomorphicisdenoted by M = M’.

Automor phism : An isomorphism from a monoid to itself is caled an
automorphism of the monoid. An isomorphism f:M—M is caled
Automorphism of monoid.

6.11 HOMOMORPHISM, ISOMORPHISM AND
AUTOMORPHISM OF GROUPS:

Homomorphism : Let (G, *) and (G, *’) be two groups. An everywhere
defined functionf : G - G’ is called a homomorphism from (G, *) to (G,
") if

f(axb)=f(a) +'f(b) VabeG

Isomorphism : Let (G, *) and (G, *’) betwo groups. A function

f: G—G’ iscaled aisomorphism from (G, *) to (G, ') if

() it is one-to-one correspondence from G to G’ (ii) f is onto.

@iiiy f(a=b)y=f(a) ='f (b) Va beG

(G, *)and (G, *") areisomorphic’ isdenoted by G=G'.

Automorahism: An isomorphism from a group to itself is called an
automorphism of the group. An isomorphism f:G—G is caled
Automorphism.

Theorem 6.4 : Let (S, *) and (T, *’) be monoids with identity e and €,
respectively. Let f : S— T be an isomorphism. Thenf(e) = €'.

Proof : Let b be any element of T. Sincef ison to, thereisan element ain
Ssuchthat f(a) =b
Then a=axe

b=f(a)=f(axe)=f(a)* f(e)=b="'f(e) (f isisomorphism)
Similarly, since a=ex*a,

b=f(a)=f(exa)f(era)=f(e)*'(a)
Thusfor any ,beT,

b=bx"f(e)=f(e)*'b

which meansthat f(€) is an identity for T.
Thus since the identity is unique, it follows that f(e)=¢€
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Theorem 6.5: Let (S, *) and (T, *’) be monoids with identity e and €,
respectively. Let f : S— T be ahomomorphism. Thenf(e) = €'.

Proof : It can be prove similarly like Theorem 6.4.

Theorem 6.6 : Let f be a homomorphism from a semigroup (S, ) to a
semigroup (T, *’). If S isasubsemigroup of (S, ), then
F(S)={teT|t=f(s) forsomese S},

Theimage of S under f, is subsemigroup of (T, *’).

Proof : If t;, and t, are any elements of F(S'), then there exist s; and s, in
S with

t = f(sp) and t, = f(sp).

Therefore,

Loty = F9) F() = F§ )= (57 9) = () F(@) =ty

Hence (T, *') isaso commutative.

Example 22 : Let G be a group. Show that the function f : G — G defined
by f(a) = & is ahomomorphism iff G is abelian. [98][6], [May-00] [4]

Solution :

Step-1: Assume G is abelian. Provethat f : G — G defined by f(a) = & is
ahomomorphism.

LetabeG. .. f(a) =&, f(b) = b and f(ab) = (ab)? by definition of f.

f(ab)=(ab)*

= (ab)(ab).

= a(ba)b associativity

= a(ab)b Gisabdian
(aa)(bb) associativity

= b’

= f(a)f(b) definition of f

.. f isahomomorphism.

Vy=a’ecG JaeGst
Step 2: y € €

' fla)=y= a’
- fisonto.

Step-3 : Assume, f : G — G defined by f(a) = & s a homomorphism.
Prove that G is abelian.

LetabeG. .. f(a) =&, f(b) = b? and f(ab) = (ab)? by definition of .
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f(ab) = f(a)f(b) f is homomorphism

(ab)* = & b definition of f

(ab)(ab) = (a&)(bb)

a(ba)b = a(ab)b associativity

ba=ab left and right cancellation taws
Gisabelian.

Example 23 : Let G be a group and let a be a fixed element of G. Show
that the function f_:G->Gdefined by f,(x)=axa *for xeG is an
isomorphism. [Dec-02][5]

Solution :
Step-1: Show that fis1-1.

_ -1
fa(x) =axa

Consider f5(x) = f4(y) forx,y eG

: axa ' =ayd' definition of f
X=Yy left and right cancellation laws
fisl-1

Vy=axa leGIxeGst.
Step 2:
f.(x)=axa*

- fisonto.

Step-3 : Show that f is homomorphism.

For x, yeG

f(x)=ax* x*a‘l, f(y)=ax* y*a‘1 and f(x*y)=ax*(x* y)*a"1

Consider f(x=r<y)=¢31=1=(x=r<y)=r<a"l for X, yeG

1 eeGisidentity

1 a_l*a:e

f(xxy)=ax(xxery)*a

= <31>1<(x>|<a_1

xa*y)xa
= (axx* a_l) *(@axy* a_l) associativity
#f(xxy)=1(x) = f(y)
f is homomorphism.
Sincef is 1-1 and homomorphism, it isisomorphism.

Example 24 : Let G be a group. Show that the function f : G — G defined
by f(a) = a™ isan isomorphism if and only if G is abelian. [May-03][4]
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Solution :

Step-1: Assume G is abelian. Provethat f : G — G defined by f(a) = a'is
an isomorphism.

) Letf(a)=f(b)

~at=b* a=b ~fis1-1.
i) VaeG=aleG

~xteG

:>f(x):x‘1

. fisonto.

iii) LetabeG. ..f(@ = at, f(b) = b* and f(ab) = (ab) * by
definition of f.

@) = (ab)
= blat reversal law of inverse
= abt Gisabeian
= f(&@f(b) definition of f.

s f isahomomorphism.
Sincef is 1-1 and homomorphism, it isisomorphism.

Step — 2 : Assume f : G — G defined by f(a) = a* is an isomorphism.
Provethat G is abelian.
Leta beG  ..f(a) =a™, f(b) = b and f(ab) = (ab) by definition of f

f(ab) = f(a)f(b) f is homomorphism
(ab)yt=a'b™ definition of f
- blat=alb™ reversal law of inverse
Gisabdian.

Example 25 : Define (Z, +) —» (5Z, +) as f(x) = 5, where 5Z=(5n: n e
Z). Verify that f isan isomorphism. [Dec-99j [

Solution:
Step -1 Show that f is 1-I.
Consider f(x) =f(y) for x, yeG
: 5x = by definition of f
X=y s fisl-1

VoxeG,IxeG
" st f(x)=5x
- fisonto.

Step-3: Show that f is homomorphism.
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For xxyeG
f(x) = 5x, d(y) = 5y and f(x+y) — 5(x+y)
Consider f(x+y) = 5(x+y) forx,y eG

=5x +5y
f(x+y) =f(x) +1(y)
f is homomorphism.
Sincef is 1-1 and homomorphism, it isisomorphism.

Example 26 : Let G be a group of real numbers under addition, and let G’
be the group of positive numbers under multiplication. Let f : G —» G’ be
defined by f(x) = €. Show that f is an isomorphism from G to G’

[May-06]
OR
Show that the group G = (R,+) is isomorphic to G’ = (R, X) where R is
the set of real numbersand R" is a set of positive real numbers.

Solution :

Step 1: Show that f is 1-1.

Consider f(x) = f(y) for x,yeG
: g=¢ definition of f
X=y o fis1-1

Step 2: If xe G, thenlog x € G and f(.logx)=€'"% = x sofisonto.

Step-3: Show that f is homomnrphism.
For x,yeG
f(x) = €, f(y) = & and f(x+y) = **)
Consider f(x +y) = e**¥ forx,y eG
= &xe’
f(x +y) =f(x) x f(y) fishomomorphism.
Sincef is 1-1 and homomorphasm, it isisomorphism.

Example 27 : Let G = {e, a &, &, &', &} be agroup under the operation
of a'a' =a', wherei +j =r(mod 6). Provethat G and Zg are isomorphic
[May-07]

Solution :
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Step -1 : Show that fisl-I.

Letx=4d,andy=4 .

Consider f(x) = f(y) forx,y e G
f(a) = f(d) definition of f
d=d
X=y fis1-1.

Step-2 : Show that f is homomorphism.

Leex=a andy=a x,ye G

f(d)=i,f@)jandf(x +y) = f(d &)

Consider f(x+y) = f(dd) = f(@) wherei +j = r(mod 6)
= r

= i +j

f(d) + f(d)

f(x xy) =f(x) +f(y) .. f is homomorphism.
Sincef is 1-1 and homomorphism, it isisomorphism.

Example 28 : Let T be set of even integers. Show that the semigroups (Z,
+) and (T, +) are isomorphic. [May-05]

Solution : We show that f is oneto one onto .
Definef : (Z, +) — (T, +) asf(x) = 2x
1) Show that fisl-1

Consider f(x) = f(y)

L2X =2y

SX=Y ~fisl-.

2) Show that f is onto
y=2x ..x=y/l2wheny iseven.
~.for every yeT there existsxeZ.
~.fisonto.
-.fisisomorphic.

3) F is homorphism
Fx+y)=2(x+y)
=2X+2y
=f(x) +1(y)

.~.f is honomorphism.
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Example 29 : For the set A = {a,b,c} giveal the permutations of A. Show
that the set of al permutations of A is a group under the composition
operation.

Solution : A={ab,c}. Sz= Set of all permutations of A.

f:(abcj f:(abc] f:(abc)
0 la b c) 1la ¢ b)’ 2 (c b a
. :(a b cj . :(a b c] :[a b Cj
3lb a c) 4 \b c a) S |c ab

Let us prepare the composition table.

—h

0ffy f, f, fy f, f
folfo fy fo f3 f4 fg
f1fy fo T4 f5 fo f3
folfy f3 fo 4 f3 §)
falfy 4 f5 fg f1 15
falfa T3 1 o f5 fy
fo|fg f, T3 £ fy Ty
i) Closure Property: Since all the elements in the composition table

€S, closure property is satisfied.

i) Associative Property: Since composition of permutations is
associative, associative property is satisfied.

i) Existance of ldentity: From the table we find that fo is the
identity
iv) Existance of Inverse: From the composition tableit is clear that

fol=fo, fol=fy, foi =1y fat=fs f =15 fs =14

Every element hasinversein Ss. Hence Sz isa group.

6.12 COSET AND NORMAL SUBEROUP:

Left Coset : Let (H, *) be asubgroup of (G, *). For any a € G, the set of
aH defined by aH ={a*h/heH} is caled the left coset of H in G

determined by the element acG. The element ais called the representative
element of the left coset aH.

Right Coset : Let (H, *) be asubgroup of (G, *). For any a € G, the set
of Ha defined by

Ha=[h*a|heH]
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is caled the right coset of H in G determined by the element acG. The
element ais called the representative element of the right coset Ha.

Theorem 6.7: Let (H, *) be asubgroup of (G, *). The set of left cosets of

H in G form a partition of G. Every element of G belongs to one and only
one left coset of H in G.

Theorem 6.8 : The order of a subgroup of afinite group divides the order
of the group.

Corollary : If (G, ) is afinite group of order n, then for any acG, we
must have a'=e, where e is the identity of the group.

Normal Subgroup : A subgroup (H, *) of (G, *) is caled a normal
subgroup if for any acG, aH = Ha

Example 30 : Determine al the proper subgroups of symmetric group (Ss,
0). Which of these subgroups are normal ?

Solution : S={1, 2, 3}. S3= Set of al permutations of S.
S3={fo, f1, f2, f3, f4, fs } where

c (123 c_(1 23 .
07 {1 2 3) 171 3 2/ 3

‘o 1 2 3 . 1 2 3 o
312 1 3) 412 3 1) 5

Let us prepare the composition table.

[

AR
w -
N N NDN
R W
~—

w

0ffy fy T, f3 T, fg
folfo f1 fo f3 T4 fg
filfy fo fq f5 Ty f3
folfo f3 fy fp f3 13
falfy 4 T fg £ 5
folfg T3 f1 5 f5 1y
felfg £, f3 £ fo 1,

From the table it is clear that {fo, f1}, {fo, f2,}, {fo, f3) and {fo, fs, f5} are
subgroups of (Sg, 0): The left cosets of {fo, f1} are {fo, f1}, {f2, fs}, {f3, f4}.
While the right cosets of {fo, f1} are {fo, f1}, {f2, f4}, {f3, f5}. Hence {fo,
f1} isnot anormal subgroup.

Similarly we can show that {fo, fo} and {fo, f;} are not normal subgroups.
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On the other hand, the left and right cosets of {fo, f4, fs} are {fo, f4, fs} and
{fa, 2, f3}.
Hence {fo, f4, fs} isanomal subgroup.

Example 31: Let S = {1, 2, 3}. Let G = S; be the group of all
permutations of elements of S, under the operation of composition of
permutations.

1 2 3
Let H be the subgroup formed by the two permutations (1 5 3} and

123
(3 ) J. Find the left coset of H in G. IsH anormal subgroup? Explain

your notion of composition clearly. [Dec-02, Nov-06]
Solution : Let

f:(123j f:(123j f:(lng

0 {1 2 3) 1113 2) 3321
f:[lsz f:(lzsj f:[lzs)

3 (2 1 3) 4712 3 1) S 1321

H:{ fo, fz}

L eft Cosetsof Hin G :

foH = {fofo, fofz} = {fo, fz} f]_H = {f]_fo, f]_fz} = {fl, f4}
foH = {fafo, fof 2} = {f2, fo} faH = {fafo, faf2} = {f3, fs}
fsH = {f4fo, f4f2} = {f4, fl} fsH = {fsfo, fsfz} = {f5, fs}

Right Cosetsof Hin G
Hfo = {fofo, f2ofo} = {fo, f2} Hfy = {fof1, fof 1} ={f1, fa}
Sincef; H = Hf; , Hisnot anormal subgroup of G.

Example 32 : Consider the dihedral group (D4, 0). Find the subgroup of
1 2 3

D, generated b
49 Y(z 3

4
1] Isit normal subgroup. Find the left cosets

of Da.
[Dec-99][6]
Solution: D= {fl, f2, f3, f4, f5, fs, f7, fg}

Example 33 : Define a normal sub-group. Let S3 = Group of all
permutations of 3 elements (say 1, 2, 3). For the following subgroups of S,
find all the left cosets . Subgroup of A ={1,(1,2)}

Where | = identity permutation, (1, 2) is a transposition. Is A a normal
subgroup. State a normal subgroup of the above group if it exists. [98][7]
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Solution : H = {fo, f3}
Theleft cosetsof H in G are as follow.

foH = {fo, f3} fiH = {fy, fs} foH = {f, f4}
faH = {f3, fo} faH = {f4, T2} fsH = {fs, f1}
Consider aright coset Hfy = {fq, f4}

Since f;H = Hfy, H isnot anormal subgroup of G.

6.13 UNIT END EXERCISES

1)

2)

3)

4)

5)

6)

7)

Determine whether the set Q, the set of all rational number with
the binary operation of addition is a group. If it is a group,
determine if it abelian, specify the identity and the inverse of a
general element.

If Gisasetof dl not-zero real numbers and a*bz%b, show that
(G, *) isan abelian group. [May-05]

Let G be a set of integers between 1 and 15 which are co-prime to
5. Find the multiplication table of G. Find 27, 7%, 1171 Is G
cyclic? [May-05]

Check whether it is an abelion group in each of the following
cases-

i) R, set of real numberswherea* b=a+b+7

i) 5=Q x Q with operation defined as (a, b) * (c, d) = (ac, ad + b).
Determine whether the following sets aong with the binary
operation, form a group. If it is a group, state the identity, and the
inverse of an eement a. If it isnot agroup, state the reason why ?

[Oct-03]
)] Set is P(S) = set of all subsets of Swhere S is a non-empty
set. The operation is that of union.

i) Set of al non-zero real numbers, under the operation of
multiplication.

Let H be a subgroup of agroup G. Define the following [ Oct-03]
i) Left coset of Hin G.
i) Right coset of H in G.

If Gisafinite group then prove that a‘G‘ =e.
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CODES AND GROUP CODES

Unit Structure:

7.0 Objectives

7.1 Introduction

7.2 Group Code

7.3 Additional Results From Boolean Matrices
7.4 Decoding And Error Correction

7.5 Maximum Likelihood Technique

7.6 Unit End Exercise

7.0 OBJECTIVES:

e To know about group code. Coding theory has developed
techniques to detect and correct errors.

e To know about parity check matrix and decode words using
maximum likelihood technique.

7.1 INTRODUCTION :

In today’s modern world of communication, data items are
constantly being transmitted from point to point.

Different devices are used for communication. The basic unit of
information is message. Messages can be represented by sequence of dots
and dashes.

Let B={0,1} be the set of bits. Every character or symbol can be

represented by sequence of elements of B. Message are coded in O's and
1's and then they are transmitted. These techniques make use of group
theory. We will see a brief introduction of group code in this chapter. Also
we will see the detection of error in transmitted message.
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The set B={0,1} isagroup under the binary operation @ whose
tableisasfollows:

S 0 1
0 0 1
1 1 0

We have seen that B isa group asthe Z 2, where + is only mod 2
addition.

If follows from theorem - “If G; and G, are groups then
G=G;xG, is a group with binary operation defined by
(a,by)(as.by)=(as,a,,by,b,). So B™ =BxBx———xB(m factors) is
a group under the operation @ defined by
(X1 X2 =X ) © (Y1 Y2 == Ym) = (X1 + Y1, X + Y2, ==X + Y )
observe that B™ has 2™ elements. i.e. order of group B™is2™.

Important Terminology :

Let us choose an integer n>mand oneto-one function
e:B™ >B".
1) Encoding Function :

The function eis called an (m, n) encoding function. It means that
every word in B™ asaword in B".

2) Codeword :
If beB™ then e(b) iscalled the code word

3) Weight :

For x eB" the number of 1'sin x is caled the weight of x and is
denoted by |x|.
eg. i) x=10011eB® Sw(x)=3

i) x=001eB® . w(x)=1

4) xX®y— Let x,yeB", then x®y s a sequence of length n that
has 1'sin those positions x & y differ and has O’s in those positions x & y
arethe same. i.e. The operation + isdefinedas0+0=0 0+1=1 1+1
=01+0=1
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eg.if x,ye B®
x=00101,y=10110
S X@y=10011
SW(xe@y)=3

5) Hamming Distance:
Let X,y eB™. The Hamming Distance 5(x,y) between x and y is
the weight of x@®y. It is denoted by [x@®y|. eg. Hamming distance

between x & y can be calculated as follows : if x = 110110, y = 000101
x®y =110011s0 [x®y| = 4.

6) Minimum distance:

Let x,yeB".then minimum distance = min {d(x,y)/x,yeB”}.
Let x;,X,——X, ae the code words, let any x;i=1-—--n is a
transmitted word and y be the corresponding received word. Then y = x
if d(x,.y)is the minimum distane for k = 1, 2, --- n. This criteria is
known as minimum distance criteria

7) Detection of errors:
Let e:B™ —B" (m<n)is an encoding function then if minimum
distane of eis ( k + 1) then it can detect k or fewer errors.

8) Correction of errors:
Let e:B™ — B" (m<n)is an encoding function then if minimum
distance of eis(2k + 1) then it can correct k or fewer errors.

Weight of a codeword : It isthe number of 1's present in the given code
word.

Hamming distance between two code words : Let X=X Xy ... Xy, and
Y=VY1Y2..¥Ym be two code words. The Hamming distance between
them, 8(X, y), isthe number of occurrencessuch that x = y; for i =1, m.

Example 7.1 : Find the weights of the following code words.

Example 7.1 : Define weight of a codeword. Find the weights of the

following. [Apr-04, May-06]
(8 x=010000 (b) x=11100
(c) x=00000 (d) x=11111

(e) x=01001 (f) x=11000
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Solution : Weight of acode word :

(8 | x|=|010000|=1 (b) | x|=|11100|=3

(c) | x|=|00000|=0 (d) | x|=]11111|=5

(e [x]|=2 ) [x|=2

Example 7.2 : Define Hamming distance. Find the Hamming distance
between the codes. [Apr-04]
(a8 x=010000, y=000101 (b) x=001100, y=010110

Solution : Hamming distance :
@ 3(x, y)=| x@y|=| 010000®000101|=| 010101|=3

(b) 5(x y)=|x®y|=|001100®010110|=| 011010 |=3

Example 7.3 : Let d be the (4,3) decoding function defined by
d:B* 5B If y=y1 Y5 Ymt d(Y)=Y1 Y2 Y-

Determine d(y) for thewordy is B4, [Nov-06]
(8 y=0110 (b) y=1011
Solution : (a) d(y)=011 (b) d(y)=101

Example 7.4 : Let d: B 5 B? bea decoding function defined by for
Y=Y1Y2-.Ye- Thend(y)=2712.

where
zi=1 if {y1, Y12 Yi+4} hasatleasttwo I's.

0 if {y1,¥i,2, Yir4) heslessthantwo 1's.

Determine d(y) for thewordy in BS.
(8 y=111011 (b) y=010100

Solution : (8) d(y)=11 (b) d(y)=01

Example 7.5 : The following encoding function f : B™ — B™? iscalled
the parity (mm+1)check code. Ifb=bb,..b,eB™, define

e(b) = b1 b . B it

where
b1 =0 if | b| iseven.
= 1if | b| isodd.

Find e(b) if (8) b=01010 (b) b=01110
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Solution : (8) e(b)=010100 (b) e(b)=011101

Example 7.6 : Let e: B% > B®isan (2,6) encoding function defined as
€(00) = 000000, e(01) = 011101
€(10) = 001110, e(11) = 111111

a) Find minimum distance.
b) How many errors can e detect?
¢) How many errors can e correts?

Solution : Let Xg, X;, X5, X3 €B® where x, =000000, x, = 011101,
X, =001110, x4 =111111

—_—~

Minimum distance=e=2

d) Minimum distance = 2

An encoding function e can detect k or fewer errors if the minimum
distanceisk + 1. ".k+1=2..k=1

.. The function can detect 1 or fewer (i.e. O) error.

€) ecan correct k or fewer error if minimum distanceis 2k + 1.
n2k+1=2
1

2

1 1.
.. ecan correct E or lessthan E i.e. O errors.

7.2 GROUP CODE:

An (m,n) encoding function e: B™ — B" is called a group code
if range of eisasubgroup of B". i.e. (Ran (e),®) is agroup.

Since Ran (6) CB"and if (Ran (€),®) is a group then Ran(e) is a

subgroup of B". If an encoding function e: B™ — B" (n < n) is a group
code, then the minimum distance of e is the minimum weight of a nonzero
codeword.
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7.3 ADDITIONAL RESULTS FROM BOOLEAN
MATRICES:

(8  Mod-2 Addition : Consider the set B with +. Now let D :[dij]
and E= [elj] be mxn Boolean matrices. We denote the mod-2 sum

D@ E asthe mxn Boolean matrix F =[fij]

where

fij =dij +8, 1<i<m, 1<j<n

Here + is addition in B.

For example
1010 1101 0110
0110|1101 ={0111
1 001 0111 1110
(b) Mod-2 Product : D*E
10
{110}{11:[0 1}
011 0 1 10

Theorem : Let D and E be mxp Boolean matrices, and F be a pxn
Boolean matrix. Then

(D@E)*F:(D*F)GB(E* F)
That is distributive property holdsfor @ and *.

Theorem 7.1 : Let m and n be non-negative integers with m<n,
r=n-m and let H be ah nxr Boolean matrix. Then the function

fy :B" > B' defined by fyy (x)=x*H, xeB" isahomomorphism

from the group B" to the group B

Proof : Let x and y be dementsin B" then
fu(x)=(x®y)*H
=(x*H)®(y*H)
= fH (X)@ fH (y)

Hence, fyy isahomomorphism from the group B" to the group B.
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Corollary 7.1 : Let m, n, r, H and f}, be as in Theorem 2. Then
N Z{XE B"/x* H :0} isanormal subgroup of B".

Parity Check Matrix : Let m<n and r=n—m. An nxr Boolean matrix

Chy hp L hy
hoy hyp . . hy

H= hml hm2 .. hmr
1 0 ... 0

0 1 ... 0
e 0 .. . 0 |

whose last r rowsform rxr identity matrix is called a parity check matrix.

we use H to define an encoding function g, :B™ —B". If

b=b b,..by, let x=e4(b)=bby..BpxX ... %,

where

X = b1y + bohpg + ...+ By
Xo = byhyo +bohpy + ...+ by

X =iy +bohpp + ...+ bphyy

Theorem 7.2 : Let X=VY Yo... Y OXXo .. X € B". Then xxH =0 if
and only x= ey (b) for some be B™.

Corollary 7.2: ey (Bm)={eH (b)/be Bm} isasubgroup of B".
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74 DECODING AND ERROR CORRECTION :

Consider an (m, n) encoding function e: B™ — B", we require an

(n,m) decoding function associate with eas d : B" — B™.

The method to determine a decoding function d is called maximum
likelihood technique.

Since ‘Bm‘=2m.

Let x, eB™ beacodeword, k =1, 2, ---™ and the received word is y then.
Min 1<k <2™{d(x,y)}=d(x;y) for same i then x; is a codeword

which is closest to y. If minimum distance is not unique then select on
priority

7.5 MAXIMUM LIKELIHOOD TECHNIQUE:

Given an (m, n) encoding function e: B™ — B", we often need to

determine an (n, m) decoding function d:B" — B™ associated with e.
We now discuss a method, called the maximum likelihood techniques, for
determining a decoding function d for a given e. Since B™ has 2™

elements, there are 2™ code wordsin B". Wefirst list the code words in
afixed order.

NG

If the received word is X, we compute S(X(i)'xl) for 1<i<2™

and choose the first code word, say it is x(s) , such that

min {S(X(i),xl)}:S(x(S),xl)

1<i<2M

That is, x') is a code word thet is closest to % , and thefirst in the

list. If X(® =e(b), we define the maximum likelihood decoding function
d associated with e by

d(x)=b
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Observe that d depends on the particular order in which the code
words in e(B”) are listed. If the code words are listed in a different

order, we may obtain, a different likelihood decoding function d
associated with e.

Theorem 7.3 : Suppose that e is an (m, n) encoding function and d is a

maximum likelihood decoding function associated with e. Then (e, d)

can correct k or fewer errors if and only if the minimum distance of eis at
least 2k +1.

Example 7.7 : Let m=2,n=5 and H= Determine the

O Ok O -
O r O R R
B O O Fr O

group code ey : B2 5 B°. [May-07]

Solution : We have BZ ={00,01,10,11}. Then e(00) = 00x;X5X3

where
% =0.1+0.0=0

Xy =0.1+0.1=0
X3=0.0+0.1=0
. ¢(00) = 00000

Now,
e( 01) = 01X1X2X3
where
X = 0.1+1.0=0
Xo = 0.1+1.1=1
Xg = 00+11=1
e(Ol) =01011

Next
(10) =10%XoX3
x =11+00=1
Xp =1.1+1.0=1
x3=1.0+0.1=0
». €(10)=10110
e(11) =11101
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1.0 0]
011
Example 7.8 : Let H= 111 be a parity check matrix. determine
1 00
010
L0 0 1]
the (3,6) group code ey : B% - B°.

Solution : First find (000), e(001), e(010), e(011), e(100), e(101),

e(110), e(112).

e(000) = 000000 e(100) =100100
e(001) = 001111 e(101) =101011
e(010) = 010011 e(110)=110111
e(100) = 011100 e(111) = 111000

Example 7.9 : Consider the group code defined by e: B — B®such that
e(00)=00000  e(01)=01110 e(10) =10101 e(11)=11011.
Decode the following words relative to maximum likelihood decoding

function.
(@ 11110 (b) 10011 (c) 10100

Solution : (a) x =1110

Compute S(X(l),xt) - | 00000®11110 | = | 11110 = 4
S(X(z),xt) ~| 01120@©11110 | = 10000 | =1
8(x(3),xt) - |10101@©11110 | =| 01011| = 3
8(x(4),xt) - |11011®11110 | = | 00101 | = 2

-1

. €(01) = 01110 isthe code word closest to % =11110.

. The maximum likelihood decoding function d associated with e is
defined by d(x )=01.



(b) % =10011
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Compute  5(XY, % | =| 00000®10011|=| 11101 | = 4

min{s(x(i),xt)}=1=6(x(4),xt)

e(11) =11011 is the code word closest to x =10011.
. The maximum likelihood decoding function d associated with e is

defined by d(x )=11.

() % =10100

Compute a(x(l),xt
S(X(Z),xt
(1
5(x9.)-

) =| 0000010100 |=|10100| =2
) =[01110©10100 |=|11010|=3
) =[10101©10100| = | 00001 |=1

|11011©10100 | =| 01111 |=4

min{s(x(i),xt)}=1=6(x(3),xt)
. €(10) =10101 is the code word closest to x, =10100.
. The maximum likelihood decoding function d associated with e is

defined by d (% )=10.

Example7.10: Let H=

o +r = O

0

= O O k-

0

o O -

1

be a parity check matrix. decode the

following words relative to a maximum likelihood decoding function
associated with ey : (i) 10100,

(i) 01101, (iii) 11011.

Solution : The code words are (00) =00000, e(01) =00101, e(10) =10011,
e(11)=11110. Then N ={00000,00101,10011,11110}. We implement
the decoding procedure as follows. Determine all left cosets of N in B5,
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asrows of atable. For each row 1, locate the coset leader ¢;, and rewrite
the row in the order.

€, ©
Example 7.11 : Consider the (2, 4) encoding function e as follows. How
many errors will e detect? [May-06]

e(00) = 0000, e(01) = 0110, €(10)=1011, e(11)=1100

Solution :
@ 0000 0110 1011 1100
0000 0110 1011 1100
0110 1101 1010
1011 0111
1100

Minimum distance between distinct pairsof e=2 .. k+1=2 .. k=1.
.. the encoding function e can detect 1 or fewer errors.

Example 7.12 : Define group code. Show that (2, 5) encoding function

e:B% - B® defined by e(00)=0000, e(10)=10101, e(11)=11011 is a
group code. [May-06]

Solution : Group Code

@ 00000 01110 10101 11011
00000 00000 01110 10101 11011
01110 01110 00000 11011 10101
10101 10101 11011 00000 01110
11011 11011 10101 01110 00000

Since closure property is satisfied, it isagroup code.

Example 7.13 : Define group code. show that (2,5) encoding function
e:B2 > B defined by e(00)=00000, e(01)=01110, &(10)=10101,
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e(ll) =11011 is agroup code. Consider this group code and decode the
following words relative to maximum likelihood decoding function.

(a) 11110 (b) 10011. [Apr-04]
Solution : Group Code
S 00000 01110 10101 11011
00000 00000 01110 10101 11011
01110 01110 00000 11011 10101
10101 10101 11011 00000 01110
11011 11011 10101 01110 00000

Since closure property is satisfied, it is a group code.

Now, let X = 00000, x(?) =01110, x® =10101 x4 =11011.

(@ » =11110

s(x(l),xtH X @ x ‘=| 00000®11110 | = |11110| = 4

5(x(2),xt): X @ x ‘:|01110@1110|=|10000|=1
S(X(S),xt): % @ x ‘=|10101@1110|=|01011|=3
6(x(4),xt)= X% @ x ‘=|11011@1110|=|00101|=2
~. Maximum likelihood decoding function d(x;)=01.
(b) % =10011

s(x(l),xtH XY @ x ‘=| 00000 ®10011 | =|10011| =3

S(X(z),xt): 2 @ x ‘=|01110@10011|=|11101|=4
S(X(S),xt): X% @ x ‘=|10101@10011|=|00110|=2
6(x(4),xt)= X4 @ x ‘=|11011@10011|=|01000|=1

- Maximum likelihood decoding function d(x ) =11.
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10 0]
011
Example 7.14: Let H= 111 be a parity check matrix. Determine
100
010
L0 0 1]
the (3,6) group code ey : B - BS.

Solution : B® ={000,001, 010, 011,100,101,110,111}

ey (000) = 000000 ey (001) =001111 ey (010) = 010011
ey (011) = 011100 ey (100) =100100 ey (101) =101011
ey (110)=110111 ey (111) =111000

Required group code = {OOOOOO, 001111, 010011, 011100,100100,
101011,110111,111000}

Example 7.15 : Show that (2,5) encoding function e: B, — Bg defined
by e(00)=00000, e(01)=01110, e(10)=10101, e(11)=11011 is a

group code. [May-06]
OR
Test whether the following (2,5) encoding function is a group code.

e(00) = 00000, e(01) = 01110, e(10)=10101, e(11)=11011  [Oct-03]

Solution :
® 00000 01110 10101 11011
00000 00000 01110 10101 11011
01110 01110 00000 11011 10101
10101 10101 11011 00000 01110
11011 11011 10101 01110 00000

Since closure property is satisfied, it is a group code.

Example 7.16 : Show that the (3,7) encoding function e:B% B’

defined by
e(000) = 0000000 e(001) = 0010110 e(010) = 0101000



e(011) = 0111110
e(110) =1101101

Solution :

S

0000000

0010110
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e(100) =1000101
e(111)=1111011 isagroup code.

0101000

0111110 1000101

e(101) =1010011

1010011

1101101

1111011

0000000
0010110
0101000
0111110
1000101
1010011
1101101
1111011

0000000
0010110
0101000
0111110
1000101
1010011
1101101
1111011

0010110
0000000
0111110
0101000
1010011
1000101
1111011

0101000
0111110
0000000
0010110
1101101
1111011
1000101

0111110 1000101
0101000 1010011
0010110 1101101
0000000 1111011
1111011 0000000
1101101 0010110
1010011 0101000

1010011
1000101
1111011
1101101
0010110
0000000
0111110

Since closure property is satisfied, it is a group code.

Example 7.17

defined by
e(000) = 0000000

€(101) =10001001

e(011) =10010101
How many errors will e detect?

Solution :

®

00000000

1101101
1111011
1000101
1010011
0101000
0111110
0000000

1111011
1101101
1010011
1000101
0111110
0101100
0010110
0000000

Consider the (3,8) encoding function e:B3— B®

10100100

e(100) =10100100
e(010) = 00101101
e(111) = 00110001 .

10111000

10001001 00101101

e(001) = 10111000
e(110) = 00011100

00011100

10010101

00110001

0000000
10100100
10111000
10001001
00101101
00011100
10010101
00110001

00000000
10100100
00000000
10001001
00101101
00011100
10010101
00110001

10100100
00000000
00011100
00101101
10001001
10111000
00110001
10010101

10111000
00011100
00000000
00110001
10010101
10100100
00101101
10001001

10001001 00101101
00101101 10001001
001100001 10010101
00000000 10100100
10100100 00000000
10010101 00110001
00011100 10111000
10111000 00011100

Minimum distance between pairsof e=3.
~k+1=3 .. k=2 ..The encoding function e can detect 2 or fewer

errors.

00011100
10111000
10100100
10010101
00110001
00000000
10001001
00101101

10010101
00110001
00101101
00011100
10111000
10001001
00000000
10100100

00110001
10010101
10001001
10111000
00011100
00101101
10100100
0000000
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Example 7.18 : Consider parity check matrix H given by
- 0

0 1

H=|1

0 0

L O 1.
following words relative to a maximum likelihood decoding function
associated with e : 01110, 11101, 00001, 11000. [Apr-04, May-07]

. Determine the group code ey : B, — Bg. Decode the

O r O R b
o

Solution : B, ={00,01,10,11}
ey (00) =00xXo%3 where % =0.1+0.0=0
Xp =0.1+0.1=0
x3=00+01=0 . ey (00)=00000

ey (01) = 01X1X2X3 where X = 0.1+1.0=0
%o =0.1+11=1
X3=00+11=1 @ (01)=01011

ey (10) =10x %3 where x =1.1+0.0=1
X =1.1+0.1=1
¥3=10+01=0  ..e4(01)=10110

ey (11) =1lqXox3 Wwhere % =1.1+1.0=1
X, =1.1+1.1=0
x3=10+11=1  ..g4(01)=11101

. Desired group code = {00000, 01011, 10110, 11101}

(1)  =01110
s(x(l),xtH X @ x ‘=| 00000® 01110 =| 01110 | =3

S(X(Z),Xt)z X @ x| =| 01011® 01110 | =| 00101 | = 2
S(X(S),xt)= 3 @ x ‘=|10110@01110|=|11000|=2
6(x(4),xt)= X% @ % |=|11101® 01110 | =|10011| = 3

. Maximum likelihood decoding function d(x;) =01



=11101

(2 %=
d xl),xt)
O X xt)

d

d

X

|
[
)
(4.

-
-
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Y e x ‘—| 00000911101 |=|11101|=4

=]011109©11101|=|10110|=3
=[10101®11101|=| 01011 =

=[11011©11101 | =| 00000 | =0

. Maximum likelihood decoding function d(x;) =11

(3) % = 00001

5{x,x )< 2
2 1) -
9.x)-
1) -

d

d

d

g
g
(

«

X(Z) &) Xt

3)@&‘

Y @ %

® % ‘=| 00000 @ 00001 | =| 00001 | =1

=| 010116 00001 | =| 01010 | = 2
=/10110© 00001 | =|10111 | =

=|11101® 00001|=|11100 |=3

. Maximum likelihood decoding function d(x; )= 00

(2 %=
) xl) )

d

d

X

X

|
<,
[
(4.

11000

x-
-
-

Ve x ‘—|00000@11000|—|11000|—

D e

3)@&‘

NP

=]01110©11000 |=|10011| =
=/10101©11000 | =| 01101 | =

=[11011©11000 | = 10000 |=1

. Maximum likelihood decoding function d(x ) =11

Example7.19: Let H=

be a parity check matrix. decode 0110

R O K
o R K

01

relative to a maximum likelihood decoding function associated with e .

[Dec-04]
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Solution : ey : By, —» Bg
B, = {00,01,10,11}
ey (00)=00xx,  where x =0.1+0.0=0
X, =0.1+01=0  ..ey(00)=0000

ey (01)=01yx,  where % =0.1+1.0=0
X,=01+11=1 ..y (01)=0101

ey (10) =10xx, where ¥ =1.1+0.0=1
X;=11+01=1  ..e,(01)=1011

ey (1) =11xyx,  where % =1.1+10=1
X,=11+11=0 ..y (01)=1110

Let XY = 0000, x? = 0101 x 1011, x4 =1110.
Let % = 0110.

S(X(l),xt):‘ e x ‘=|0000@0110|=|0110|=2
- XD @ x ‘=|0101@0110|=|0011|=2

[X2x]
S(X(S),xt): % @ x ‘=|1011@0110|=|1011|=3
(X1

= x(4)®xt‘:|1110@0110|:|1OOO|:1

MinS(x(i), xt) = 8(x(4),xt) and e(11) = x4 ~d(x)=11.

Example 7.20 : Consider the (2,5) group encoding function defined by
e( OO) = 00000, e(Ol) =01101, e(lO) =10011, e(11) =11110 and d be an

associated maximum likelihood function. Use d to decode the following
words. [May-03, May-05]
(i) 10100 (if) 01101

Solution : Let XY = 00000, x? = 01011, x3 =10110, x3 =11110
(1) % =10100

S(X(l),xt):‘ X @ x ‘=| 00000®10100 | = | 10100 | = 2

s(x(z),xtH X2 @ x ‘=| 01101@10100 | =|11001| =3
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8(x(3),xt):‘ X% @ x ‘=|10011@1o1oo|:| 00111 =

8(x(4),xt):‘ ) @ x ‘:|11110@101oo|:| 01010 =2

" Mins(x(i),&)=6(x(l),xt) i.e. XV is the code word which is closest

to % and 1<i<4

The first in their list in the list and e(00) = XY . So we define maximum
likelihood decoding function d associated with e by d(xt) =00.

(2) % =01100
8(x1),xt) ‘ @xt‘=|00000®01101|=|01101|:

s(x xt) X2 @ x ‘:|01101@01101|=|00000|=o
a(x xt) 3 @ x ‘=|10011@01101|:|11110|:4
8(x ) X @, ‘=|11110@01101|=|10011|:3

" Mins(x(),xt)=6(x(z),xt) ie. x? is the code word which is
closestto % and 1<i<4

The first in their list in the list and e(01) = x2). So we define maximum
likelihood decoding function d associated with e by d(x )= 01.

Example7.21: Let H= be a parity check matrix. [Dec-02]

=N

R O O R Pk
L

L O
i) Determinethe (3,5) group code ey : B3 - B>,

i) Construct the decoding table and decode the following words using
maximum likelihood technique— 1) 00111, 2) 10111, 3) 11001



Solution : (i) ey :B3—B®.
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B> = {000, 001, 010, 011,100,101,110,111}
ey (000) = 000x%, where x =0.1+0.0+0.1=0

ST (001) = 001X1X2

SN (010) = 010X1X2

ey (011) = 011x %,

ey (100) = 100X1X2

ey (101) = 101X1X2

ey (110) =110%%,

ey (112) = 111x%,

Lt x = 00000,

where

where

where

where

where

where

where

X0 =0.1+0.1+0.0=0 .

¥ =0.1+0.0+11=1
X =0.1+01+1.0=0

% =0.1+1.0+0.1=0
X0 =0.1+11+0.0=1

¥ =01+10+11=1

X0 =0.1+11+1.0=1 ..

% =11+0.0+0.1=1

X =11+0.1+0.0=1 ..

% =11+0.0+1.1=0
X =1.1+0.1+1.0=1

¥ =11+1.0+0.1=1
X =1.1+1.1+1.0=0

x =11+10+11=0
Xp =1.1+1.1+1.0=0

". ey (000) = 00000

- e4(001) = 00110

. €4(010) = 01001

e (011) = 01111

e (100) =10011

-.e4(001) =10101

- e4(110)=11010

- ey (111) =11100

x2 Z 00110, x¥ = 01001, x¥ =01111

(3 210011, x(® 10101, x(”) 211010, x® =11100

(ii) (1) Let x =00111

S(X(l),xt):‘ xY @ % ‘:| 00111|=3

8(X(2),Xt)=

x(2)®>q‘=|00001|=1

|
s(x(S),xtH 3 @ x ‘=|01110|=3
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S(X(B),xt):‘ X&) @ x ‘=| 00101 =

3)

MinS(x(i), xt) = S(X(S),Xt) and e(010) = x ~.d(x)=010.

Example 7.22 : Let H = be a parity check matrix. determine

O r O L, O K
R O O F +— O

1
1
0
1
0
0

the corresponding group code.

i) How many errors will the above group code detect?
i) Explain the decoding procedure with an example. [Oct-03]

Solution : Given H is a parity check matrix of (3,6) group code.

ey: B3> BO.

B> = {000, 001, 010, 011,100, 101,110,111}
ey1(000) = 000000, &;(001) = 001011, e(010)=010101, e (011)=011111
e1(100) =100110, &(101) =101110, &(110) =110011, & (111)=111000.

(i) Min distance of a group code = min weight of non-zero code word = 3
~k+1=3 k=2
.. The group code can detect at the most 2 or fewer errors.

(it) Maximum likelihood decoding procedure :
Let (000 )_X(l) eH(OOJ-)— X2, eH(010)=x( 3 & (011) = X W4
& (100 )45 &4 (101) =X 6 %(110):X(7), & (111) =X 8)

and let x; betransmitted codeword. Find S(X(i), xt) , take minimum.

If MinS(x(i),&):S(x(S),xt) then maximum likelihood decoding

function d can be defined as d(x )=b where e (b)= ). If two or

more x(i) have the same minimum vaue then we select the x(s)
whichever comes first in the list and define the decoding function
accordingly.



148

Example 7.23 : Consider (3,6) encoding function e as follows. [May-07]

e(000) = 000000, e(001)=000110, e(010)=010010, e(011)=010100
e(100)=100101, e(101)=100011 e(110)=110111, e(111)=110001

i)
i)

Show that the encoding function eis agroup code.

Decode the following words with maximum likelihood technique :
101101, 011011.

Solution : (i)

S

000000

000110

010010

010100

100101

100011

110111

110001

000000
000110
010010
010100
100101
100011
110111
110001

(ii)

Let

000000
000110
010010
010100
100101
100011
110111
110001

000110
000000
010100
010010
100011
100101
110001
110111

010010
010100
000000
000110
110111
110001
100101
100011

010100
010010
000110
000000
110001
110111
100011
100101

100101
100011
110111
110001
000000
000110
010010
010100

100011
100101
110001
110111
000110
000000
010100
010010

Y — 000000, x? = 000110, x® = 010010,
x5 Z100101, x® =100011, X" =110111 x® =110001.

(1) Let % =101101

5(x(1), xl) - ‘x(l) ® xl‘ - 000000 ©101101 = [101101 = 4

110111
110001
100101
100011
010010
010100
000000
000110

110001
110111
100011
100101
010100
010010
000110
000000

«(4) = 010100,

S(X(Z) , xl) PO xl‘ - 000110 ®101101] = [101011| = 4
8(x(3), x1) Ve xl‘ - 010010101101 = [111111] = 6
6(x(4) , xl) XY e xl‘ - 010100 ®101101] =[111001| = 4
s(x(5),x1) =[x @ x| =[100101®101101] = 001000 =1
s(x(G), xl) ~|x(®) @ x| =[100011®101101 = [001110| = 3
8(x(7) , xl) = X7 @ x| =[110111®101101 = 011010 = 3
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35X - ‘X(S) ® xl‘ ~[110001®101101] =(0111000] = 3

Mins(x(i),xl) = (x(S) ® xl) . Thus x®) is the code word that is closest
to % and e(011) = x5,

. We define maximum likelihood function d associated with e by
d(%)=100.

(2) Let % = 011011
5(x(1), xl) = ‘x(l) ® xl‘ - |000000® 011011 = (011011 = 4
-x?e xl‘ - [o00110 @ 011011 =|011101 = 4
Ve xl‘ - |010010® 011011 =|001001 = 2

14 @ xl‘ =/0101009 011011 =|001111| = 4

= IX®) @ x| = 100011 @ 011011 = [111000| = 3

425
[4%1)
[44.5)
8(x(5) , xl) = X% @ x| =[100101® 011011| =[111110| = 5
[
( ) ~|X7) @ x| =[110111@ 011011 =[101100| = 3
[41)

¥ e xl‘ = [110001® 011011 = 101010/ = 3

Mins(x(i),xl):(x(s) @xl). Thus x1) is the code word that is closest

to % and e(011) = «3).

. We define maximum likelihood function d associated with e by
d(X1)=010.
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Example7.24: Let H= be a parity check matrix.

O r O R Rk
R O R, kL O
O O Fr OO

0 01

Decode the following words relative to a maximum likelihood decodi ng
function associated with ey : (i) 011001, (ii) 101001, (iii) 111010.

Example7.25: Let H= be a parity check matrix. [Nov-06]

O r O R Rk
R O R, kL O
O O Fr OO

0 01

Determine the (3, 6) encoding function ey : B> — B®. Decode the words

011001 relative to a maximum likelihood decoding function associated
with ey .

Solution : Let ey B3> B°

B3 = {000, 001,010, 011,100,101,110,111)

e (000) = 000000 = xY, & (001) = 001011 =x?),

ey =(010)= 010110 = x¥), e, =(011) = 011201= x*),
ey =(100)=100100=x%), g =(101) =101111=x5),

ey =(110)=110010=x"), & =(111) =112001 = x®)
(i) Let x =011001
X, x1) - ‘x(l) ® xl‘ ~0110001| = 3

X2 e xl‘ - 010010/ = 2

(

()

s(x(3), xl) Ve xl‘ ~|001111 =4
[

XY e xl‘ - 00100 =1
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5)

-|X®) @ =111101 =5

= X% @ x| =[110110/ = 4

)
)

x(7),xl) = X7 @ x| =[101011 = 4
)

¥ xl‘ = 1000000] =1

Mins(x(i), xl) = (x(4) ® xl). Thus x¥) i the code word that is closest
to % and e(011) = {4

. We define maximum likelihood function d associated with e by
d(Xl)ZO].l.

) =[x e xl‘ = 100010/ = 2
Ve xl‘ - 111111 = 6

- e xl‘ - 110100/ = 3

|
|
|
19,5 ) =|x*) @ x| - 001101 -3
|
|
|

5

8 X(G),Xl - X% @ x| =|000110| = 2
5(X7) x| =|X7) @ x| = |011011] = 4
5(X8, x| =|x® @xl‘ - |010000] =1

=

5

N
—_—
>S\
=

,xl) = (X(S) @ xl). Thus x® is the code word that is closest
to x and e(111) = x8).

. We define maximum likelihood function d associated with e by
d(x)=111.
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Example7.26: Let H= be a parity check matrix.

o - O
= O O B
o O +— -

0 01

Decode the following words relaive to a maximum likelihood decodi ng
function associated with ey : (i) 10100, (ii) 01101, (iii) 11011.

Solution : Let ey : B? — B> where B® = {00, 01,10,11}
e (00)=00000, e (01)=01101, ey =(10)=10011 ey (11)=11110
Use the above decoding procedure.

Example 7.27 : Consider the (2,9) encoding function e defined by
e(00)=000000000, e(01)=011 101 100
e(10)=101110 001, e(11)=110 001 111

Let d be an associated maximum likelihood function. How many errors
will (e d) correct.

Solution :
Let  xY =000 000 000, X2 011101100,  x(3 =101 110 001,

%) 2110 001 111.

@ 000000000 011101100 101110001 110001111
000 000 000 - 011101100 101110001 110001111
011 101 100 - 110011101 101100011
101 110 001 - 011111110
110001111
.. Minimum distance =5 ~2k+1=5 k=2

~.(e d) can correct k =2 or fewer errors.

7.6 UNIT END EXERCISE

(1) Define the following. [Dec-02]
(i) Hamming Distance,
(i)  Minimum distance of an encoding function
(iii) Group Code
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(iv) Decoding function
(2) Consider the (2,6) encoding function e:

e(00) = 000000 e(01)=011110 e(10)=101010 e(11)=111000
Find the minimum distance (ii) How many errors will e detect.

[May-03]
[0 1 1]
101
3) Let H=|1 0 O| be a panty check matrix. decode the following
010
110 1]

words related to maximum likelihood technique associated with e @
a) 10100 b) 01101 c) 11011

4) Consider the (2, 4) group encoding function e:B? — B* defined by
e(00) = 0000  €(10) = 1001
e01) = 0111 e(11) = 1111

Decode the following words relative to a maximum likelihood
decoding function a) 0011 b) 1011 ¢) 1111.

5) Consider the (3, 5) group encoding function e B — B° defined by
€(000) = 0000 &(100) = 10011
e(001) = 00110 &(101) = 10101
€(010) = 01001 &(110) = 11010
e(011) = 01111 ¢ 111) = 11100

Decode the following words relative to a maximum likelihood
decoding function. @) 11001 b) 01010 c) 00111.
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CLASSIFICATION OF LANGUAGE

[Syllabus : Classification of Languages : Overview of Languages,
Representation of regular languages and grammars, Finite state machines.]

Unit Structure

8.0 Objectives

8.1 Introduction

8.2 Strings and regular expression

8.3 Regular sets

8.4 Languages

8.5 Classification of phrase structure Grammer
8.6 Representation of special grammars and languages :
8.7 Regular Grammars and Regular Expression
8.8 Finite State Machines

8.9 Moore Machine (recognition machine)
8.10 Unit End Exercises

8.11 References

8.0 OBJECTIVES:

To study there types of structure used in models of computation,
namely, grammar, finite-state machines & moore machine. Which will
help us to understand computer science and data networking.

8.1 INTRODUCTION:

Computer can perform many tasks. Given a task, two questions
arise. Thefirst is: can it be carried out using a computer? Once we know
that this first question has an affirmative answer, we an ask the second
guestion : How can the task be carried out? Models of computation are
used to help answer these questions.

Example 8.1 : Let A = {Sachin, Saurav, Virat, well, runs, fields, quickly,
slowly}.
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Then A* contains real sentences such as “ Sachin runs quickly” and
“Virat fields well” as well as nonsense sentences such as “Quickly Sachin
well Virat Slowly”.

Here we separate the elements in each sequence with spaces. It is
often done when the elements of A are words.

Regular Expression : The idea of a recursive formula for a sequence is
useful in more genera strings. In the formal languages and the finite state
machines the concept of regular expression plays on important role.

A regular expression over A is a string constructed from the
elements of A and the symbols (,),v,* aaccording to the following
definition.

1. The symbol A isaregular expression.

2. If peA, the symbol p isaregular expression.

3) If x and y are regular expressions, then the expression xy is
regular.

4) If x and y regular expressions, then the expression x v yisregular.

5) If x isaregular expression, then x* isregular.

Example 8.2 : Let A = {0,1}. Show that following expressions are all
regular  expressions over A. @ O0°(0v1) b) 00 (0v1)*1
C) (Ol)*(Olv 1n*

8.2 STRINGSAND REGULAR EXPRESSION:

Given a set A, we can construct the set A* consisting of al finite
sequences of elements of A. Often the set A is not a set of numbers, but
some set of symbols. In this case, A is caled an alphabet and the finite
sequencesin A* are called words from A, or sometimes strings from A.

For this case in particular, the sequencesin A* are not written with
commas. We assume that A* contains empty sequence or empty string,
containing no symbols, and we denote this string by A.

Catenation :

If wi=15,%....5,and w, = t1,t tk are elements of A* for some set
A, we define the catenation of w;, and w, as the sequence s;,%.....S
t1,b.....tk. The catenation of w, with w, iswritten as w,.w, or wyw, and is
another element of A*. Note that if weA* then w*A = w and A*w = w.
This property is convenient and is one of the main reasons for defining the
empty string A.
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Solution : We know from definition of regular expression that -

a)

b)

From (2) 0,1e A= 0&1 areregular expression.
From (4) 0, 1 are regular expression = 0 v 1 isregular.

From (5) 0" &0v 1 areregular =0 & (0v 1) areregular.
From(3) 0" &(0v1) areregular =0 & (0v 1) isregular.

Weknow that 0, 1& 0" (0v 1) are regular.
From (3) using twice =00* (0 v 1)*1 must be regular.

From (3) 01 isregular expression.
From(4) 1" & (Olv 1*) are regular.

From (3) (01)° (Olv 1*) isregular.

8.3 REGULAR SETS:

Associated with each regular expression over A, there is a

corresponding subset of A*. Such sets are called regular subsets of A* or
just regular sets if no referenceto A is needed.

To compute the regular set corresponding to a regular expression,

we use the following rules.

1.

The expression A corresponds to the set { A}, where A is the empty
stringin A*.

If xeA, then the regular expression x corresponds to the set { x).

If o and B are regular expressions corresponding to the subsets M
and N of A*, then the expression off corresponds to
M.N = {st/seM and teN}. Thus MN is a set of al catenations of
stringsin M with stringsin N.

If the regular expressions o and 3 correspond to the subset M and
N of A, then { avp} correspondsto MUN.

If the regular expression o corresponds to the subset M of A* then
{a}* corresponds to the set M*. Note that M is a set of strings
from A~ Elements from M* are finite sequences of such strings,
and thus may themselves be interpreted as strings from A. Note
also that we aways have neM*.

Example 8.3: Let A={0, 1}. Find regular sets corresponding to the three
regular expressions (@) 0*(0v1)* (b) 00* (Ov1)*l (c) (01)*(01v1*)
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Solution:

(@ The set corresponding to 0* (Ov1)* consists of a1 sequences of 0's
andI’s. Thusthe set isA*.

(b)  The expression 00* (Ov1)* 1 corresponds to the set of all sequences
of 0's and 1's that begin with at least one 0 and end with at least
one 1.

(c) Theexpression (01)*(Olvl*) corresponds to the set of all sequences
of 0’'s and 1's that either repeat Ol a total n > 1 times, or begins
with a total of n > O repetitions of 01 and end with some number
k > 0 of 1's. This set includes, for example the strings 1111, 01,
010101, 010101011111 and 011.

84 LANGUAGES:

Words in the English language can be combined in various ways.
The grammar of English tells us whether a cornbination of words in a
valid sentence.

For Example the peacock writes neatly is a valid sentence because
it is formed from a noun phrase the peacock, followed by a erb phrase
writes nesatly. We do not care that it is meaningless. Since we are
concerned only with the syntax and not with its semanticsi.e. meaning.

Research in the automatic translation of one language to another
has led to the concept of formal language. It is specified by awell-defined
set of rules of syntax. Rules of syntax are important not only in linguistic
but also in the study of programming languages.

Grammars - Languages can be specified in various ways. We describe
important way to specify a language, namely, through the use of a
grammar.

A grammar provides a set of symbols of various types and a set of
rules for producing words. More precisely, agrammar has avocabulary V,
which is a set of symbols used to derive members of the language. Some
of the elements of the vocabulary cannot be replaced by other symbols.
These are called terminals, and other members of the vocabulary, which
can be replaced by other symbols, are called non terminals. The set of
terminals and non terminals are usually denoted by T and N respectively.

Definition : A phrase structure grammar G is defined to be a 4-type (V, S,
99, ), where V is afinite set, Sisasubset of V,3;eV -Sand—isa

finite relation on V',. The element 9pis a starting point for the

substitutions. The relation —>on V" specifies allowable replacements. For
example if PP, we may replace P by P. Traditionally the statement
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PP is caled a Production of G. then P & P are caled the left and
right sides of the production of G.

If G=(V,S,9,,—) is aphrase structure grammar, we cal s the

set of terminal symbols and N =V - S the set of non terminal symbols.
Note that V = SUN.

Derivation Tree : a derivation in the language generated by a context -
free grammar can be represented graphically using an ordered rooted tree,
called a derivation tree. The root of this tree represents the starting
symbol. The internal vertias of the tree represent the nonterminal symbols
that arise in the derivation. The leaves of the tree represent the termina
symbols that arise.

For example - derivation tree for the derivation of “the hungry rabbit eats
quickly” can be given as:

Sentence
Noun phrase verb phrase
Article adjective  noun verb adverb
The hungry rabbit eats quickly

Language - The set of al properly constructed sentences that can be
produced using a grammar G is called the language of G and is denoted by
L (G)

Example 8.4: Let S = {Ramesh, Seema, drives, jogs; carelessly, rapidly,
frequetitly}

N = { sentence, noun, verbphase, verb, adverb} and let V = SUN.

Let Vo = sentence and suppose that the relation — on V* is described by
sentence — noun verbphrase

noun — Ramesh

noun — Seema

verbphrase — verb adverb

verb — drives

verb — jogs

adverb — carelessly

adverb — rapidly

adverb — frequently
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The set S contains al the alowed words in the language; N
consists of words that describe parts of sentences but that are not actually
contained in the language. Write the derivation of the sentence “Seema
drivesrapidly.” Also draw the derivation tree.

Solution : To prove this, we consider the following sequence of stringsin
V*

Sentence

noun verbphrase

Seema verbphrase

Seema verb adverb

Seema drives adverb

Seemadrivesrapidly.

Note: Derivation of the sentence is not unique. Another derivation of the
same sentence is given below.

sentence

noun verbphrase

noun verb adverb

noun verb rapidly

noun drives rapidly

Seemadrivesrapidly.
Derivation tree:
sentence /o{ntence
noun /\ verbphrase noun Io o verbphrase
Seema ©
(a) (b)
o sentence
sen&ence

o verbphrase

noufl
noun o o verbphrase / \
Seema <|> / \ verb adVerb

O verb © adverb Segma l

o
drives

(© (@



160

sentence
(]

7\

noun o o verbphrase
O ver
o

S o
cema b o adverb

drives o rapidly
Example85: LetV ={vo,w,a b, c} S={a b, ¢} and let — be the
relation on V* given by

1.vo—> aw 2.wWmeBbbw 3. wec

Consider the phrase structure %rammar G=(V,s Vg ).
() Derive the sentence ab°c. Also draw the derivation tree.
(i) Derive the sentence ab’c. Also draw the derivation tree. [Nov-086]

Solution :

(i) To drive sentences in L(G), it is necessary to perform successive
substitutions, using (1), (2) and (3) until all symbols are eliminated other
than the terminal symbols a, b and c.

Vo

aw

abbw

abbbbw

abbbbbbw

abbbbbbc

i.e ab’c

The derivation tree for ab®c is shown below. It is not abinary tree :

Similarly we can draw derivation tree for ab“c.

Example86:Let V = {wow, a b, ¢}, S={a b, ¢} and let > be the
relation on V* given by
1.vo i avgb 2. Vob — bw 3.abw ¢
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Let G = (V, S, Vo, —) be the corresponding phase structure grammar.
Determine the form of allowable sentencesin L,(G). [May-06, May-07]

Solution: We may continue to use (1) any number of times, but we must
eventually use production (2) to eliminate vo.

Repeated use of (1) will result in a string of the form a'voh"; i.e.
there are equal number of asand b’s.

When (2) is repeatedly used, the result is a string of the form
strings of the form a™ (abw) b™ withm >0

At this point the only production that can be used is (3).
a'ch" n>0.
It cannot be expressed as trees.

Example 8.7
Determine whether the word cbab belongs to the language

generated by the grammar G=(V,S,vqy,—>)whereV =[a b, c, A, B, C,
S|, T=[4a b, c], Sisthe starting symbol & the productions are

S— AB
A Ca
B Ba
B—Cb
B—b

Ccb
Grb

Solution: S+ AB
S Cab byusing A+ Ca
Sk cbaB byusing C— ab
S+ cbabbyusing B—b

.". cbab belongs to the language generated by G. There are different
approaches to get the result.

85 CLASSIFICATION OF PHRASE STRUCTURE
GRAMMER

Let G = (V, S, vo, —) be a phrase structure grammar. Then we say that
Gis

. TypeO: if NO restrictions are placed on the productions of G.
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2. Type 1: if for any production wi, — Wo, the length of w, isless than or
equal to the length of w,. (where length of a string is the number of
wordsin that string).

3. Type 2. if the left hand side of each production is a single,
nonterminal symbol and the right hand side consists of one or more
symbols.

4. Type 3: if the left hand side of each production is a single,
nonterminal symbol and the right hand side consists of one or more
symbols, including at most one nonterminal symbol, which must be at
the extreme right of the string.

Note: In each of the preceeding types, we permit the inclusion of the
trivia production vp = A, wWhere A represents the empty string.

It follows from the definition that each type of grammar is a
specid case of the type preceding it.

In the above illustrations example-4 is atype-2 grammar, example-
5isatype-3 grammar and example-4 is atype-0 grammar.

Grammar of typeO or 1 are quite difficult to study and little is
known about them.

Context-free grammar: Type-2 grammers are sometimes called context-
free grammar, since the symbols on the left of the productions are
substituted for wherever they occur. A language generated by a type 2
grammar is called a context - Free language. When there is a production of
the form awb+— aw,b, the grammar is caled type 1 or context -

sensitive because w; can be replaced by w, only when it is surrounded by
thestringsa & b.

Regular Grammar : Type-3 grammers are also called regular grammar.

The process we have considered in this section mainly dividing a
sentence within a grammar has a converse process. The converse process
involves taking a sentence and verifying that it is syntactically correct in
some grammar G by constructing a derivation tree that will produce it.
This process is caled parsing the sentences, and the resulting derivation
treeis often called the parse tree of the sentence. Parsing is of fundamental
importance for compilers and other forms of language trandlation. A
sentence in one language is parsed to show its structure, and a tree is
constructed. The tree is then searched and, a each step, corresponding
sentences are generated in another language. In this way a C++ program,
for example, is compiled into a machine language program.
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8.6 REPRESENTATION OF SPECIAL GRAMMARS
AND LANGUAGES:

There is another notation that is sometimes used to specify atype 2
grammar, caled Backus - Naur Form (BNF), after John Backus, who
invented it and Peter Naur who refined it for use in the specification of the
programming language ALGOL. The Backus-Naur Form is used to
specify the syntactic rules of many computer languages, including Java.

We know that the productions in type - 2 grammar have a single
nonterminal symbol as their left-hand side. Instead of listing all the
productions separately, we can combine all those with the same non
terminal symbol on the left-hand side into one statement. Instead of using
the symbol +—in a production we use the symbol = we enclose all
nonterminal symbolsin brackets, <>, and welist all the right-hand sides of
productions in the same statement, separating them by bars. For example
the production.

A Aa,A—>a and A+~ AB can be combined into A

w=(A)afa|(A)(B).

Example 8.8 :
In BNF notation, the productions of example 4 appear as follows :

(sentence) . (noun) (verb phrase)
(noun)..=Ramesh/Seema
(verbphrase)..=(verb) (adverb)
(verb) ..=drives/ Jogs

{

adverb> -.=carelessly / rapidly / frequently

Note that the left-hand side of a production may also appear in one
of the strings on the right-hand side.

Thus in the second line of Example 8 (w) appears on both sides.

When this happens, we say that the corresponding production w +— bbw
isrecursive.

If a recursive production has w as left-hand side, we will say that
the production is normal if w appears only one on the right-hand side and
is the rightmost symbol. The recursive production w +— bbw isnormal.



164

Example 8.9:
Let V ={vo,w,a b, c} S={a b, c} and let > be the relation on V*
given by

1. vp — aw. 2. W bbw 3 wec
Consider the phase structure grammar G = (V, S, Vg, ).
Write the production rules using BNF notations.

Solution: V> = a<w>
<w>: = bb<w>|c

Example 8.10 : BNF notation is often used to specify actual programming
languages. PASCAL and many other languages had their grammars given
in BNF initially. In this example we consider a small subset of PASCAL’s
grammar. This subset describes the syntax of decimal numbers and can be
viewed as a mini-grammar whose corresponding language consists
precisely of all properly formed decimal numbers.

LetS={0,1,2,3,4,56,7,8,9, .}
Let V be the union of Swith the set
N = { decimal-number, decimal-fraction, unsigned-integer, digit}

Let G be a grammar with symbol sets V and S, with starting symbol
“decimal-number” and with productions given in BNF forms as follows.

1. < decimal-number > :: =
< unsigned-integer >|< decimal-fraction >|< unsigned-integer >
< decimal-fraction >
< decimal-fraction > :: - < unsigned-integer >

< unsigned-integer > :: = <digit > | < digit > < unsigned-integer >
< digit > :: = 0|]1]2|3/4/5]6/7|8]9

~w

Following derivation tree, in this grammar, shows the decimal
number 23.14.

Note that the BNF statement numberd 3 is recursive, i.e. the
production.

“unsigned integer + digit unsigned integer” is recursive and also normal.
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decimal number

unsigned integer decimal fraction

unsigned
integer

unsigned integer

digit digit unsigned integer

\3 ’ di!g,it
1 \

4

Example 8.11

As in example 9, we give a grammar that specifies a piece of
several actual programming languages. In these languages, an identifier (a
name for a variable, function, subroutine and so on) must be composed of
letters and digits and must begin with a letter. The following grammar,
with productions given in BNF, has precisely these identifiers as its
language.

G=(V, S, identifier, —)

N = {identifier, remaining, digit, letter}
S={ab,.....z,0,1,2,.....9} .

V =NuUS

1. <identifier>:: = <letter> | <letter> <remaining>

2. <remai n? ng>:: = <letter>[<digit>|<letter><remaining>|<digit>
<remaining>

3. <letter>::=a|b|c]...|z

4. <digit>:: = 0|1|2]3|4|S|6]7[8|9

Again we see that the production “remaining s letter remaining”
and “remaining  digit remaining” in BNF statement 2 are recursive &
normal.

8.6.2 Syntax Diagram: A second aternative method for displaying the
production in sometype-2 grammars is the syntax diagram.

Example 8.12 : Draw syntax diagrams representing following BNF
statements.

(i) BNF statement that involves just a single production, such as
<w> = < WS> <wp> <wz> will result in the diagram shown in
Figure (i)
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(i) If Terminal symbols circles or ellipse, syntax diagram is shown in
Figure (ii)

<SW> = <wWip> <Wp> | <wip> a | be<wip>
(ifi)Normal recursive production.

<w>:: = ab<w>
The syntax diagram for this production is shown in Figure (iii).

(iv) (w)..=ablab(w)
The syntax diagram for this production is shown in figure (iv).

Solution :

® @
(iii)
@ ®—
Y
(iv)

Example 8.13 : For the grammar specified below describe precisaly the
language, L(G), produced. Also give the BNF and the corresponding
syntax diagram for the productions of the grammar.  [May-03, May-05]

G=(v,SVvo, =)
V={vo,ab), S={ab)
= . Vo b adVg
Vo—a
Vo, b

Solution: (i) L(G)
={a2™, n>0} U {a™b, n>0}

(i)  BNF
Vo>l = aaxve>~ | alb



(ili)  Syntax diagram

® ®
g G\ ' Y
7 U 7 7

Example 8.14 : For the grammar specified below describe precisaly the
language, L(G), produced. Also give the BNF and corresponding syntax
diagram for the productions of the grammar.

G=(v,Svo, =)

V= (V01 Vi1, X, y1 Z)! S= {X! y! Z}
Vo — XVo

Vo > YVi,

Vi > YVi,

Vi— Z

Solution: (i) L(G)
xX"'y'z, m>0,n>1,

(i) BNF
<V > =x(Vg)|y(Vy)
<Vyp>:i=yVp)|z

(ili)  Syntax diagram

8.7 REGULAR GRAMMARSAND REGULAR
EXPRESSION :

Theorem-1: Let S be afinite set, and L < S*. Then L is aregular set if
and only if L = L(G) for someregular grammar G = (V, S, vo, )

Theorem-1 tells us that the language L(G) of a regular grammar G must
be the set corresponding to some regular expression over S, but it does not
tell us how to find such aregular expression



168

8.8 FINITE STATE MACHINES:

Many kinds of machines, including components in computers, can
be modeled using a structure called afinite-state machine. Several types of
finite-state machines are commonly used in models. All these versions of
finite-state machines include a finite set of states, with a designated
starting state, an input alphabet and a transition function that assigns a
next state to every state and input pair. Finite-state machines are used
extensively in applications in computer science and data networking for
example, finite - state machines are the basis for programs for spell
checking, grammar checking, indexing or searching text, recognizing
speech, transforming text using markup language such as HTML and
network protocols that specify how computers communicate.

Suppose that we have afinite set S ={s,s, ... ,Sn] , afinite set I,
and for each xel, afunction fx:S—S. Let F ={f,,/xel}. The triplet (S,I,F)
is caled afinite state machine, Sis called the state set of the machine and
the elements of S are called states. The set | is called the input set of the
machine. For any input xel, the function fy describes the effect that this
input has on the states of the machine and is called a state transition
function. Thus, if the machine is in state si. and input x occurs, the next
state of machine will be fy(s).

Since the next state fx(s) is uniquely determined by the pair (s, X)
thereisafunction F:SXI—S given F(5, x) = fX(s)

Theindividua function, fyx can all be recovered from a knowledge of F.

Example 8.15: Let S={ sy, 51} and | = {0, 1}. Define fy and f; as follows :
fo(So) = S0, fo(S1) = s1, f1(s0) = 51 fa(s1) = o0

This finite state machine has two states sps;, and accept two
possible inputs 0 and 1. Give transition table. Also draw diagraph of the

finite state machine. [Nov-06]
Solution : We can summarize this machine as follows :
0|1
SAEAE]
SHEAES

(State Transition Table) Thisdeviseisoften called as T flip-flop

R R
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Example 8.16 : Consider the state transition table shown below

alb
S|S S
S (S [S
|19
Draw digraph of the machine
Solution :
b
a b
O &) 5:))
b a

Example 8.17 : Consider the finite state machine M whose transition table
is shown below

B I RER 1C8

RS R ISR 1O
QL& |
L R ISR 10 Ko

Draw digraph of the machine

Solution :

89 MOORE MACHINE (RECOGNITION MACHINE) :

Many different kinds of finite-state machines have been developed
to model computing machines. There is important type of finite-state
machine with output, where the output is determined only by the state.
This type of finite state machine is known as a Moor Machine, because
E.F. moore introduced this type of machine in 1956.

It is defined as a sequence (S, I. F. s, T) where (S, [, F) constitute
afinite state machine, sy € Sand T < S. The State 5 is called the starting
state of M, and it will be used to represent the condition of the machine
before it receives any input. The set T is called the set of acceptance state
of M. These states will be used in language recognition.
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When the diagram of Moore machine is drawn, the acceptance
states are indicated with two cocentric circles, instead of one. No special
notation will be used on these diagraphs for the starting state, but unless
otherwise specified, this state will be named so.

Example 8.18 : Let M be Moore machine (S, I. F, s, T) where (S, I, F) is
the finite-state machine of figure in example 4 and T = {1, ss}. Show the
digraph of M.

Solution : The diagraph of M isasfollows:

Example 8.19 : Draw the diagraph of the machine whose state transition
table is shown. Remember to label the edges with the appropriate inputs.
M=( I, F s F) where S ={sy, 51, &, Ss}, | ={0, 1} and transition
function isgiven in the table. [May-05]

State

=]
C
=3

& @@L
L8 |L o
P N

Solution : The state transition digraph is shown below.
1

B
N

Example 8.20 : Draw the state transition diagram for the following
S={s0, s1, %, S3), | ={a b; c}. [Dec-02, May-07]

& @@L

S [Se S C O )
@ QL& T
S S SO C O )
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Solution: The state transition digraph is shown below.

Example 8.21 : Draw the diagraph of the machine whose state transition
table is shown. Remember to label the edges with the appropriate inputs.
[Dec-04]

g
@ (¢ |@ |
Q8|

Solution : The state transition digraph is shown below.
a

Example 8.22 : Draw the diagraph of the machine whose state transition
table is shown: [Oct-03]

So

g
@ @@ >
Q|8 |m

S

Solution: The state transition digraph is shown below.

a,b

Example 8.23 : Draw the diagraph of the machine whose state transition
table is shown. Remember to label the edges with the corresponding
inputs.
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M= (S I, Fwhere S = {90, sl, 2, s3}, | ={0, 1} and the transition
function is given below in table

State | Input

& @@L
@@L |L o
@

Solution : The state transition digraph is shown below.

Example 8.24 : Construct the state transition table of the finite state
machine whose diagraph is shown below.

Solution : The state transition digraph is shown below.

State | Input

DP9
LY LIvio
LLP LY =
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Example 8.25 : Construct the transition table of the finite state machine
whose diagraph is. [Dec.-04, Nov-06]

Solution : State transition table of the given machine is shown below

State | Input

A[B|C
S [S|S|®
Si | |S|Ss
S 18]S
S |8

Example 8.26 : Construct the state transition table of the finite state
machine whose diagraph is shown.. [Oct.-03, May-06]

"—L 6!
n(De——6),

Solution : State transition table of the given machine is shown below.

State | Input

LYY
LYo
LY L=
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Example 8.27: Construct the state transition table of the finite state
machine whose diagraph is shown below. [Apr-04]

Solution: State transition table of the given machine is shown below.

State | Input

FIT
S [S[S
S (SIS
S [S[S

Example 8.28: Let the state transition table for afinite state machine be
[Dec-02, Nov-05,May 06, May-07]

State | Input

0|1
S |[S[S
S |S[S
S |S[S
S |S S

List values of the transition function f,, for (i) w = 01001, (ii) w = 11100.
Solution: (i) w = 01001

0 1 0 0 1
S0 S5 S5 S5 S5 S (&) =S

01 0 0 1
S5 815 55 S5 S S HulS) =S

0O 1 0 0 1
$5,9,5%,5%,$%,S fW(SZ) =S

0 1 0 0 1
S5 S5 S0 S S St ~fw(S) =S
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(i)  w=11100

1 1 1 0 O
S5 S5 S5 S5 55 S (&) =S

1 11 0 O
S S S S S S ~fw(S) =S

1 1 1 0 O
S S5 S0 S5 S5 St (&) =S

1 1 1 0 O
S5 S5 815 95 S5 S ~fw(S) =S

Example8.29: S={0, 1, 2, 3, ..., 9}

N={ <deo-num>,<dec-frac>,<unsigned int>,<digit>}
<deo-num>::=<unsigned int>/<dec-frac>/<unsigned int><dec-frac>
<dec-num>::=<unsigned int>

<unsigned int>::=<digit>/<digit><unsigned int>
<digit>::0/1/2/....19.

Give derivation tree and syntax diagram to represent decimal numbers
using the above grammar. [Dec-02]

Example 8.30: Consider a Moore machine (S1,F,s,T) where (S1,F) is a
finite state machine given by [Apr-04]

LIPL|Y

LYo
LWL
LI LYo

And T={s,,s3} . Draw the digraph of the Moore machine.

Solution: The digraph of the given Moore machine is shown below.
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Example 8.31 : Define finite state automaton. Construct the state diagram

for the finite-state automaton M = (S,1,5,F) where S = {sy, S1, &, S3};

I ={0,1}, F ={%, ss} and thetransition function f is given in the table.
[May-03]

State
Input

L&
LYPLYP o
DIYPP L=

Solution: The state diagram for the finite state automaton is shown below.

8.10 UNIT END EXERCISE :

11)  Construct a finite state machine that gives a 1 as its output bit if
and only if the last three bitsreceived are all 1's. [Oct-03]

12)  Let M(S|,F) be afinite state machine. Define arelation R on | as
follows. [Oct-03]
X, Rx if and only if f1 (5)=fx(s) for every se S.
Show that R is an equivalence relation on |

8.11 REFERENCES:

1) Let A = [+, %, & b] show that the following expressions are regular
over A.

i) a+b(ab) (axbva)
i0a+bx@fv@

nn(dbv+)v+b*

2) Let A =[a b, ¢]. Give the regular set corresponding to the regular
expression given i) (avb)ch" ii) a(bb) ¢
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3) Let S = [0,1]. Give the regular expression corresponding to the
regular set given

i) [00, 010, 0110, 011110, ---]

ii) [0, 001, 000, 00001, 00000, 0000001, --]

4) Draw the diagraphs of the machines whose state transition table is
shown below :

a) State Input b) 0 1 2
F T S S 1S IS

S S St S1 S1 S S

S S S S 2 1S |Ss

S ) S S S e )

5) Let | =[0, 1] and S = [a, b]. construct all possible state transition
tables of finite - state machines that have S as state set and | as input set.

6) Let a be the grammar with vocabulary V =[ S, A, a b], T =[a b],
starting symbol s, Productions P=[S+>aA,S>b, A aa]. What is
L(a), the language of this grammar?

7) Give a phrase - structure grammar that generates the set
[0""[n=012--]

8) Give the BN form for the production of signed integers in decimal
notation. (A signed integer is a nonnegative integer preceded by a plus
sign or minus sign).

9) Let G be a grammar with V =[a b, c, 5], T = [a b, ¢] starting
symbol S and production S+ abs,S+ bcs, S+ bbs,s—~a and
s cb. Construct derivation trees for i) bcbba ii) bbbcbba iii)
bcabbbbbcb.

10) Find a phrase - structure grammar for each of these languages -

a) The set consisting of the bit strings0, 1 & 11.

b) The set of bit strings containing only 1s.

¢) The set of bit strings that start with 0 and end with 1.

d) The set of bit strings that consist of a O followed by an even
number of 1s.



